It’s well known that finding the genetic cause of rare diseases can be complex — that’s why so many remain unsolved. But researchers are beginning to get a grasp on just how complex these conditions can be, thanks to the heightened power of PacBio. PacBio principal scientist Aaron Wenger kicked off a recent webinar with a quote from University of Washington scientist Evan Eichler, who said “there are three key aspects to genetic disease associations: comprehensive variant discovery, accurate allele-frequency determination, and an understanding of the pattern of normal variation and its effect on expression.” Wenger explained how HiFi reads…
As the flurry of research around the SARS-CoV-2 virus continues at an unprecedented pace, scientists are beginning to tackle some of the more complex immunological responses with the help of Single Molecule, Real-Time (SMRT) sequencing. Hundreds of people tuned in live to a special May 7 webinar, “Understanding SARS-CoV-2 and host immune response to COVID-19 with PacBio sequencing.” Meredith Ashby, Director of Microbial Genomics at PacBio, described some of the resources being generated by both PacBio and our users in order to help labs who are using SMRT Sequencing technology to investigate SARS-CoV-2 and COVID-19. These include two microbial sequencing…
The PIK3CA oncogene has been the target of intense research scrutiny for decades. Remarkably, though, a new paper in Science today reports completely novel findings about compound mutations that are associated with patients who respond extremely well to targeted therapies. While more studies are needed, this work has important implications for delivering treatment to patients with breast cancer and other common cancers. Neil Vasan “Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors” comes from lead author Neil Vasan, senior authors Maurizio Scaltriti and José Baselga, and collaborators at Memorial Sloan Kettering Cancer Center, the Icahn School…
Variety is the spice of life, and one of the drivers of genetic variation is gene splicing. After a gene is transcribed, there are alternatively spliced transcripts that add even more variety to that gene’s expression and its menu of phenotypes. It appears that there are types of disorders that take advantage of these varieties. Top amongst them are myeloid disorders, where somatic mutations in splicing factors lead to cell proliferation in myelodysplastic syndromes (MDS) and blood cancers. Christopher R. Cogle, a physician-scientist at the University of Florida, would like to understand why, in hopes that such knowledge could be…
What can a cute, cuddly, stingless bee from the Brazilian rainforest teach us about eusociality and mitochondrial evolution? Natalia S Araujo wants to find out, and she’s not the only one. As the only bee species in which true polygyny (multiple fertile queens in the same colony) occurs, there is great interest in Melipona bicolor, and its mitochondrial genome (mt genome) was one of the first sequenced in bees. But the sequence was incomplete and lacked information about its mitochondrial gene expression pattern. So Araujo, a postdoctoral researcher of animal genomics in the GIGA Institute of the University of Liège,…
They are the unwelcome comeback kids: Measles, mumps and other old-time diseases that were once nearly extinct are on the rise in suburban communities as well as developing nations. In order to better understand the evolution of these microbial menaces, researchers at the Wellcome Sanger Institute and Public Health England have been sequencing historical samples deposited in the UK’s National Collection of Type Cultures (NCTC). The latest is a strain of cholera-causing bacteria (Vibrio cholerae) extracted in 1916 from the stool of a British soldier who was convalescing in Egypt. Researchers at the Sanger Institute revived the WWI soldier’s bacteria…
It’s a murder mystery of massive proportion, albeit on a miniature scale: Male-killing among several species of insects, caused by selfish symbiotic bacteria. Swiss researchers believe they have finally solved a question that has stumped scientists for decades, with potential implications for pest and infection control. Researchers have identified the toxin responsible for selective killing of male fruit flies (left) using PacBio sequencing. In a recent Nature publication, Toshiyuki Harumoto and Bruno Lemaitre of the Global Health Institute at the École Polytechnique Fédérale de Lausanne (EPFL) in Lausanne, Switzerland, have reported their findings regarding a toxin in Spiroplasma poulsonii, one…
Candida krusei, a form of yeast that is known to be drug-resistant and able to cause opportunistic infections in humans What’s in a name? Too much, when it comes to the taxology of yeast, it turns out. Scientists from University College of Dublin have found that two distinctly named species of yeast are in fact 99.6% identical at the base pair level, and collinear. In other words, they are the same species. It was a bit of a shock, especially considering one of the yeast species, Pichia kudriavzevii, is commonly used in food production and classified by the US FDA…
Haemophilus influenzae, a sample of which was deposited to the NCTC collection by Alexander Fleming, from his own nose. The genomes of 3,000 strains of bacteria, including some of the deadliest in the world, are now available to researchers as part of an ambitious project by the UK’s National Collection of Type Cultures (NCTC), in partnership with the Wellcome Sanger Institute and PacBio. Plague, cholera, streptomyces, and 250 strains of E. coli, are among the reference genomes created, as well as all ‘type strains’ of the bacteria in the collection — the first strains that describe the species and are…