X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, July 18, 2019

RNA Sequencing SMRT Grant Winner to Help Hone New Therapeutic Strategy in Acute Myeloid Leukemia

Variety is the spice of life, and one of the drivers of genetic variation is gene splicing.  After a gene is transcribed, there are alternatively spliced transcripts that add even more variety to that gene’s expression and its menu of phenotypes.  It appears that there are types of disorders that take advantage of these varieties. Top amongst them are myeloid disorders, where somatic mutations in splicing factors lead to cell proliferation in myelodysplastic syndromes (MDS) and blood cancers.  Christopher R. Cogle, a physician-scientist at the University of Florida, would like to understand why, in hopes that such knowledge could be…

Read More »

Thursday, June 13, 2019

The SMRT Special: Journal Focuses on Advances in SMRT Sequencing

Single Molecule, Real-Time (SMRT) Sequencing continues to get smarter and more powerful, with the recent launch of the Sequel II system increasing capabilities and efficiencies of the long-read DNA and RNA PacBio sequencing technology even further. In a special issue devoted entirely to the technology in the MDPI open access journal Genes, guest editors Adam Ameur of Uppsala University and Matthew S. Hestand of the Cincinnati Children’s Hospital Medical Center present eight articles highlighting research conducted using SMRT Sequencing. As this special issue demonstrates, the benefits of SMRT Sequencing to many different areas of research are becoming evident, not only…

Read More »

Monday, June 10, 2019

Catching up with Carola and the ‘Solar-Powered’ Sea Slug

Two years ago, Carola Greve and colleagues at the Zoological Research Museum Alexander Koenig in Bonn, Germany, were seeking to #SeqtheSlug as part of the 2017 Plant and Animal SMRT Grant competition, and the popular project was a close runner-up. Greve didn’t give up on her quest to sequence the ‘solar-powered’ sea slug. We caught up with her recently at the SMRT Leiden Scientific Symposium, where her update on the sea slug project earned her a Best Poster award.    Why the sea slug?   Although Mollusca represents the second largest animal phylum with around 85,000 extant species, only 23 mollusc genomes…

Read More »

Thursday, May 30, 2019

Unraveling Malaria Mysteries with Long-Read Sequencing

Plasmodium falciparum Malaria is a complicated killer, and efforts to develop effective vaccines have been hindered by gaps in our understanding of both the parasite that causes the infection, Plasmodium falciparum, and its transmitter, the mosquito. Like many virulent parasites, P. falciparum has evaded close genetic scrutiny due to its complex and changing composition. Its 23 Mb haploid genome is extremely AT rich (~80%) and contains stretches of highly repetitive sequences, especially in telomeric and subtelomeric regions. To make matters more complicated, it expands its genetic diversity during mitosis via homologous recombination, leading to the acquisition of new variants of…

Read More »

Thursday, May 16, 2019

Top 10 Tools and Tips from the SMRT Leiden Informatics Developers Meeting

Hundreds of SMRT scientists came together recently in Leiden to learn about the latest updates to PacBio technology and to showcase their data analysis tools. Extremely useful information was shared, and future collaborations were sparked. For those who weren’t able to jet to the Netherlands to attend, we’ve rounded up the top tools and tips presented at the European SMRT Informatics Developers Meeting. For an in-depth report on the event, check out this blog post by PacBio Principal Scientist Elizabeth Tseng. SMRT Link – Of course our own open-source SMRT analysis software suite will be top of the list. Updates…

Read More »

Wednesday, May 15, 2019

SMRT Leiden Symposium Showcases Successes in Clinical and Conservation Genomics

What can a cute, cuddly, stingless bee from the Brazilian rainforest teach us about eusociality and mitochondrial evolution? Natalia S Araujo wants to find out, and she’s not the only one. As the only bee species in which true polygyny (multiple fertile queens in the same colony) occurs, there is great interest in Melipona bicolor, and its mitochondrial genome (mt genome) was one of the first sequenced in bees. But the sequence was incomplete and lacked information about its mitochondrial gene expression pattern. So Araujo, a postdoctoral researcher of animal genomics in the GIGA Institute of the University of Liège,…

Read More »

Wednesday, May 1, 2019

The Sequencing of the Octoploid Strawberry Genome Uncovers its Evolution

Ángel Vergara Cruces By Ángel Vergara Cruces, Universidad de Málaga Plant geneticists have achieved a sweet feat: the first assembly of the octoploid strawberry genome. As reported in Nature Genetics earlier this year, a team led by Steven J. Knapp of the University of California-Davis and Patrick P. Edger of Michigan State University, identified more than 100,000 genes in their high-quality assembly and annotation of the commercial strawberry, Fragaria x ananassa. The main challenge when assembling a polyploid genome is that similar regions in different subgenomes (so-called homeologous regions) can lead to uncertainty about where to assign a given read…

Read More »

Wednesday, April 24, 2019

Now Available: Sequel II System Delivers ~8 Times as Much Data as Previous System

We’re thrilled to announce the launch of the Sequel II System, reducing project costs and timelines with approximately eight times the data output compared to the previous Sequel System. It enables customers to comprehensively detect human variants ranging in size from single nucleotide changes to large, complex structural variants. The system is also ideal for standard applications such as de novo assembly of large genomes and whole transcriptome analysis using the Iso-Seq method. The Sequel II System is based on the proven technology and workflow underlying the previous version of the system, but contains updated hardware to process the new…

Read More »

Friday, March 15, 2019

From the Smallest Organisms to the Most Complex, the Future is Bright for Plant & Animal Sequencing

For the thousands of scientists who attended The Plant and Animal Genome Conference in San Diego this January, the sentiment seemed to be “ask not if PacBio is for you, but how PacBio can work best for you.” The answer that emerged during PacBio’s PAG workshop and subsequent SMRT Informatics Developers Conference was a complex one. Recent developments, such as new chemistry, new SMRT Cells, the SMRTbell Express Template Prep Kit, and SMRT Link 6.0 software have already led to faster and easier library prep, longer reads with more data and reliability, better transcript characterization (Iso-Seq) and phasing (FALCON-Unzip) capabilities…

Read More »

Monday, February 18, 2019

Asian Aquaculture Industry Benefits From Two New Genome Assemblies

With their large brains, sophisticated sense organs and complex nervous systems, cephalopods could teach us a thing or two about learning, memory, and adaptability. But despite their evolutionary, biological, and economic significance, their genome information is still limited to a few species. To bridge this gap, a team of Korean scientists has assembled the genome of the common long-arm octopus (Octopus minor) using PacBio technology to sequence both the DNA and RNA of the emerging model species. Found in Northeast Asia, particularly in coastal mudflats of South Korea, China, and Japan, O. minor has become a major commercial fishery product…

Read More »

Tuesday, January 8, 2019

SMRT Grant Winner: Uncovering the Metabolic Secrets of Hibernation

What has four legs, lots of fat and fur, and will possibly help uncover novel mechanisms to combat diabetes? Photo courtesy of WSU Bear Center Grizzly bears! If humans were to undergo regular, extended cycles of weight gain and inactivity, they’d likely end up with obesity, muscle atrophy, or type 2 diabetes. But grizzly bears experience no ill effects from their annual fat gain and sedentary hibernation. Somehow they are able to switch their insulin resistance between seasons, and researchers at Washington State University are hoping to figure out how, with possible therapeutic value for humans. We’re proud to support…

Read More »

Friday, December 21, 2018

The Genomic Gift Worth Giving: New Assembly Could Help Conserve Declining Turtle Dove Populations

Turtle dove. Photo by Andy Morfew You may be more likely to get five gold rings or three French hens than two Turtle doves this Christmas. The subject of the famous holiday carol is in precipitous decline across Europe, with 94 percent of Turtle doves lost since 1995, and fewer than 5,000 breeding pairs left in the UK. In an attempt to save the species, geneticists at the Wellcome Sanger Institute identified it as a priority species to be sequenced as part of a year-long 25th anniversary project. Collaborators at the University of Lincoln sent samples (collected from live birds…

Read More »

Wednesday, December 19, 2018

New Low-Input Protocol Enables High-Quality Genome Created from Single Mosquito

Anopheles coluzzii mosquito UPDATED January 18, 2019 This paper is now available at Genes. ORIGINAL POST December 19, 2018 High-quality reference and de novo genomes have been celebrated by geneticists, population biologists and conservationists alike, but it’s been a dream deferred for entomologists and others grappling with limited DNA samples, due to previous relatively high DNA input requirements (~5 μg for standard library protocol). A new low-input protocol now makes it possible to create high-quality de novo genome assemblies from just 100 ng of starting genomic DNA, without the need for time-consuming inbreeding or pooling strategies. The targeted release date for…

Read More »

Thursday, December 13, 2018

A Sweet Sequence: Sugarcane Genome Assembly After Five-Year Collaborative Effort

It took nearly 20 years until the technology was right, and five years of hard graft by more than 100 scientists from 16 institutions, but the result was worth it, according to University of Illinois plant biology professor Ray Ming. One of several authors of a paper published and featured on the cover of Nature Genetics reporting the assembly of a 3.13 Gb reference genome of the incredibly complex autopolyploid sugarcane Saccharum spontaneum L, Ming said he dreamed about having a reference genome for sugarcane while working on sugarcane genome mapping in the late 1990s. But sequencing technology was not…

Read More »

Monday, December 10, 2018

Targeted PacBio Sequencing Adds to Scientific Arsenal in Evolutionary Arms Race

Cotton crops the world over have benefited from the pest-killing protein from Bacillus thuringiensis (Bt), first used in sprays and then, in 1996, transgenic crops, resulting in reduced insecticide use, enhanced biological control, and increased farmer profits. But the precious plants are under threat once again by a tiny but mighty pest: pink bollworm (Pectinophora gossypiella). In India, where more than 7 million farmers have planted 10.8 million hectares of transgenic Bt cotton, the lepidopteran pest has developed resistance to two different forms of the toxin that made the transgenic crops so effective, creating catastrophic economic losses. Scientists have been…

Read More »

1 2 3 4 5

Subscribe for blog updates:

Archives