X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, June 9, 2015

Attend Our Worldwide User Meetings & SMRT Informatics Developers Conference

If you’d like to hear about the latest applications of SMRT® Sequencing from users, we have several events coming up. Our worldwide user group meetings and workshops feature PacBio users sharing their latest research, tips, and protocols, as well as our staff providing training and updates on products and methods to optimize your research. We’re always humbled by the quality and variety of science presented at these meetings. And for the bioinformatics crowd, we have a new event in August focused on developing new analytical tools for PacBio® data. Here’s more detail on each event, including registration details: Americas East…

Read More »

Tuesday, June 2, 2015

In Assembler Evaluation, Scientists Recommend Non-hybrid Approach to Bacterial Genomes

A new publication in Nature Scientific Reports recommends using only the PacBio® system to sequence bacterial genomes for the best chance of generating an accurate and finished assembly. The paper, “Completing bacterial genome assemblies: strategy and performance comparisons,” reviews several different long-read assembly methods for bacterial genomes. Authors Yu-Chieh Liao, Shu-Hung Lin, and Hsin-Hung Lin from the Institute of Population Health Sciences in Taiwan note that while several methods exist, efforts to evaluate and compare them have been insufficient. They set out to thoroughly assess these methods, which include hybrid assembly protocols as well as long-read-only protocols. Long-read technology appealed…

Read More »

Tuesday, May 26, 2015

New MHAP Algorithm Delivers Fast, High-Quality Genome Assemblies

A new publication in Nature Biotechnology reports the development of a lightning-fast genome assembly pipeline optimized for long reads. Scientists from the University of Maryland and the National Biodefense Analysis and Countermeasures Center created the MinHash Alignment Process, known as MHAP, to dramatically reduce assembly time and improve assembly quality. Their results are worth celebrating: assembly times were 600-fold faster compared to existing methods. “Using MHAP and the Celera Assembler, single-molecule sequencing can produce de novo near-complete eukaryotic assemblies that are 99.99% accurate when compared with available reference genomes,” the authors write. In the best cases, entire chromosome arms assembled…

Read More »

Thursday, April 30, 2015

In Study, Continuous Long Reads Outperform Synthetic Long Reads for Resolving Tandem Repeats

Scientists from Argentina and Brazil published the results of a study comparing long-read approaches to characterize the genome structure of a highly complex region of the Y chromosome in Drosophila melanogaster. They found that Single Molecule, Real-Time (SMRT®) Sequencing outperformed synthetic long reads in accurately representing tandem repeats. The study aimed to resolve the structure of the autosomal gene Mst77F, which had previously been found to have multiple tandem copies; the region, however, was known to be grossly misassembled in the reference. The scientists, from Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas and Universidade Federal…

Read More »

Tuesday, March 3, 2015

AGBT Highlights, Day Three: Genomic Medicine, Population Specific Genomes, Goats & Influenza

Day 3 of the AGBT conference was packed with interesting talks – we’ve covered a few highlights below.  Admittedly, it took a little more caffeine than usual to power through the day….. In the clinical session, Euan Ashley from Stanford told attendees that genomic medicine is no longer something that we’re aiming for; it’s already here and being used routinely. He expressed concerns about accurate mapping of short-read sequence data for clinical utility, adding that the community needs to make progress in understanding complex genomic regions. Ashley noted that we still don’t have a gold-quality human genome with every single…

Read More »

Thursday, February 26, 2015

AGBT Highlights, Day One: Advancing Human Reference Assembly & Sequencing in the Clinic

It is great to be here in Marco Island for the AGBT meeting! The 16th annual meeting hit the ground running with a pre-meeting workshop hosted by the Genome Reference Consortium (GRC) followed by an opening session that was more clinically focused than many attendees are used to at this tech-heavy conference. From the dynamic Q&A sessions, it was clear that these were precisely the kind of talks that people have been looking for as this meeting evolves downstream along with genomic science. The GRC workshop, entitled ‘Advancing the Human Reference Assembly’ included four speakers: Valerie Schneider (NCBI), Tina Graves-Lindsay…

Read More »

Wednesday, February 4, 2015

High-Quality Genome Assembly and Transcriptome of Cotton Using SMRT Sequencing

A recent research partnership with KeyGene, a Dutch plant genomics and crop improvement company, has resulted in an integrated whole-genome assembly and transcriptome of Gossypium hirsutum, or tetraploid cotton. This is the first known complete assembly for a polyploid crop with a genome larger than 2 Gb. KeyGene has a long established reputation for generating high-quality data even for very complex genomes. For this project, the cotton genome was sequenced with 38x coverage using Single-Molecule, Real-Time (SMRT®) Sequencing. Assembly of PacBio® long reads reduced the number of contigs from more than 1 million in an existing short-read assembly to fewer…

Read More »

Friday, January 23, 2015

Breaking New Frontiers in Grass Genomics to Understand Drought Tolerance with the 2014 SMRT Grant Program Winner: Oropetium thomaeum

Emerging from a myriad of interesting genome nominations, from the American cranberry to South American prawns and African Guava, Oropetium thomaeum submitted by Todd Mockler at the Donald Danforth Plant Science Center was selected as the first winner of the “Most Interesting Genome in the World” SMRT® grant program in 2014.  Also affectionately known as Oro, this grass species can be  revived with water after a long drought exposure. At 250 Mb, the genome is also the smallest amongst grasses due to compaction of complex repeat and gene structures, including previously identified expansions in osmoprotectant biosynthesis pathways. Kicking off the…

Read More »

Tuesday, January 20, 2015

Looking Ahead: The 2015 PacBio Technology Roadmap

By Jonas Korlach, Chief Scientific Officer All of us at Pacific Biosciences are very proud of the momentum SMRT® Sequencing achieved in 2014, especially due to the more than 500 customer publications now in the literature describing its many applications. We remain deeply thankful to all the scientists who have applied our technology to gain new insights into genomes, transcriptomes, and epigenomes. By applying SMRT Sequencing to a wide variety of applications, our customers are demonstrating that long, unbiased reads have brought about new quality standards for many fields of genomic research. This exciting level of scientific activity and collaboration…

Read More »

Thursday, December 4, 2014

A New Reference Genome for Shigella: SMRT Sequencing of a Historic Sample

In a special issue of The Lancet dedicated to World War I, an article by scientists from the Wellcome Trust Sanger Institute used Single Molecule, Real-Time (SMRT®) Sequencing to decode the genome of the first isolate ever collected of Shigella flexneri. The bacterium, a descendant of E. coli and first identified as a separate strain in 1902, was responsible for severe dysentery among World War I troops due to poor hygienic conditions in the trenches. Today, S. flexneri is one of the leading causes of diarrheal death among children in developing countries and other areas of poor sanitation. Hoping to…

Read More »

Thursday, October 2, 2014

‘We’re Going to Find the Keys’: Dan Geraghty Discusses an Approach to Understanding Causal Genetic Variation

Dan Geraghty, a researcher at Fred Hutchinson Cancer Research Center and CEO of Scisco Genetics, has spent much of his career focused on the genetics of immune response. Recently he talked to Mendelspod host Theral Timpson as part of a continuing series of podcasts on the rise of long-read sequencing. Geraghty explained that while there have been decades’ worth of studies associating the genetics of the major histocompatibility complex (MHC), and the highly polymorphic HLA class 1 and 2 genes, we still haven’t found the key mutations for a variety of different autoimmune diseases such as type 1 diabetes, rheumatoid…

Read More »

Tuesday, September 23, 2014

Science Perspective: “Tracking Antibiotic Resistance”

In the current issue of Science there is an interesting Perspective by Scott Beatson and Mark Walker of the University of Queensland discussing research published this week in Science Translational Medicine by Conlan et al. who used SMRT® Sequencing to track plasmid diversity of hospital-associated infectious bacteria at the NIH Clinical Center. The article provides a nice overview of the paper, including an explanation of the important role that plasmids play in spreading antibiotic resistance. They illustrate why short-read DNA sequencing technologies are insufficient in resolving them and long reads are necessary for this work. “Plasmids may be viewed as…

Read More »

Monday, September 22, 2014

Maryland Scientists Produce High-Quality, Cost-Effective Genome Assembly of Loa loa Roundworm Using SMRT Sequencing

A paper just released in BMC Genomics details what authors call “the most complete filarial nematode assembly published thus far at a fraction of the cost of previous efforts.” The project was performed using the PacBio® RS II DNA Sequencing System by scientists at the University of Maryland School of Medicine’s Institute for Genome Sciences and the Laboratory of Parasitic Diseases at the National Institute of Allergy and Infectious Diseases. In this genome sequencing effort, scientists generated a de novo assembly of Loa loa, a roundworm that infects humans. L. loa, transmitted to humans by deer flies, causes loiasis. The…

Read More »

Wednesday, September 17, 2014

NIH Study: Finished Genomes Provide Actionable Data to Combat Spread of Drug-Resistant Bacteria

A study launched over concerns around hospital-acquired infections has led to a recommendation for better microbial screening of patients upon admission. The research, from scientists at several NIH institutes, found that cases of hospital-acquired infection were less common than cases where patients were likely already colonized but received false negative results from basic screening. The study was made possible by Single Molecule, Real-Time (SMRT®) Sequencing, which allowed researchers to sequence plasmids and analyze their diversity and likely phylogeny. Short-read sequencing and strain-typing technologies could not provide the information necessary for a comprehensive analysis. “Single-molecule sequencing to track plasmid diversity of…

Read More »

Tuesday, September 9, 2014

Genome Analysis of Unicellular Organism Reveals Frequent, Massive Reshuffling

A recent publication from senior author Laura Landweber at Princeton University offers a remarkable and unexpected look at sweeping genomic rearrangements in a unicellular organism. “The Architecture of a Scrambled Genome Reveals Massive Levels of Genomic Rearrangement during Development,” published in Cell, comes from lead authors Xiao Chen and John Bracht as well as other collaborators from Princeton, the Icahn School of Medicine at Mount Sinai, Benaroya Research Institute, and other institutions. The project focused on Oxytricha trifallax, a single-celled eukaryote that lives in ponds. Despite its unicellular simplicity, the organism has an extensive ability to scramble and rearrange its…

Read More »

1 2 3 4

Subscribe for blog updates:

Archives