X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, August 7, 2018

PacBio Sequencing Reveals Food Processing & Pathogenic Strains of Yeast are the Same Species

[caption id="attachment_28852" align="alignright" width="300"] Candida krusei, a form of yeast that is known to be drug-resistant and able to cause opportunistic infections in humans[/caption] What’s in a name? Too much, when it comes to the taxology of yeast, it turns out. Scientists from University College of Dublin have found that two distinctly named species of yeast are in fact 99.6% identical at the base pair level, and collinear. In other words, they are the same species. It was a bit of a shock, especially considering one of the yeast species, Pichia kudriavzevii, is commonly used in food production and classified…

Read More »

Tuesday, December 12, 2017

Creating an Epigenetic Barcode to Accurately Characterize Microbial Communities

Unraveling the role of the microbiome in human health and environmental samples is an emerging priority in scientific study. But despite the best advances in sequencing technology, identifying the bacteria, fungi, and other organisms present in complex samples remains a huge challenge. Metagenomic shotgun sequencing can read chromosomes, plasmids, and bacteriophages, and comparison to reference genome sequences can be used to place them into putative taxa and species bins, but these methods fail to sufficiently distinguish between genomes that are very similar. A team of scientists from the Icahn School of Medicine at Mount Sinai, Sema4, and other institutions has…

Read More »

Tuesday, December 5, 2017

The Antibiotic Arms Race: Tracking K. pneumoniae in a Hospital Setting

[caption id="attachment_21181" align="alignright" width="287"] Courtesy of NIAID[/caption] In a recent paper, scientists in Germany call for a genomic database of Klebsiella pneumoniae strains to accelerate strain identification as well as drug-resistance status. To that end, they used SMRT Sequencing to generate high-quality assemblies for 16 isolates collected in German hospitals. “Monitoring microevolution of OXA-48-producing Klebsiella pneumoniae ST147 in a hospital setting by SMRT sequencing” comes from lead authors Andreas Zautner and Boyke Bunk, senior authors Jorg Overmann and Wolfgang Bohne, and collaborators at University Medical Center and other institutes in Germany. The urgency to characterize K. pneumoniae strains comes from…

Read More »

Friday, March 3, 2017

‘Mobilome’ Study of Antibiotic Resistance Implicates Transposon Activity

[caption id="attachment_13900" align="alignright" width="300"] Klebsiella pneumoniae[/caption] A recent effort to understand the genetic mechanisms behind swappable elements of drug-resistance among bacteria built on previous studies of Enterobacteriaceae isolates collected at the National Institutes of Health Clinical Center. The work was made possible by high-quality genome assemblies of these organisms generated earlier with SMRT Sequencing technology. In this project, scientists from the U.S., France, and Brazil teamed up to learn precisely how drug-resistance plasmids are spread from one species to another. They report the results of that investigation in mBio with the publication “Mechanisms of Evolution in High-Consequence Drug Resistance Plasmids” from…

Read More »

Subscribe for blog updates:

Archives