X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
お問い合わせ

Search scientific conference presentations and posters

Search Query

Author Search

High-throughput SMRT Sequencing of clinically relevant targets

The European Human Genetics Conference 2018

2018

Abstract +

Targeted sequencing with Sanger as well as short read based high throughput sequencing methods is standard practice in clinical genetic testing. However, many applications beyond SNP detection have remained somewhat obstructed due to technological challenges. With the advent of long reads and high consensus accuracy, SMRT Sequencing overcomes many of the technical hurdles faced by Sanger and NGS approaches, opening a broad range of untapped clinical sequencing opportunities. Flexible multiplexing options, highly adaptable sample preparation method and newly improved two well-developed analysis methods that generate highly-accurate sequencing results, make SMRT Sequencing an adept method for clinical grade targeted sequencing. The Circular Consensus Sequencing (CCS) analysis pipeline produces QV 30 data from each single intra-molecular multi-pass polymerase read, making it a reliable solution for detecting minor variant alleles with frequencies as low as 1 %. Long Amplicon Analysis (LAA) makes use of insert spanning full-length subreads originating from multiple individual copies of the target to generate highly accurate and phased consensus sequences (>QV50), offering a unique advantage for imputation free allele segregation and haplotype phasing. Here we present workflows and results for a range of SMRT Sequencing clinical applications. Specifically, we illustrate how the flexible multiplexing options, simple sample preparation methods and new developments in data analysis tools offered by PacBio in support of Sequel System 5.1 can come together in a variety of experimental designs to enable applications as diverse as high throughput HLA typing, mitochondrial DNA sequencing and viral vector integrity profiling of recombinant adeno-associated viral genomes (rAAV).

Single chromosomal genome assemblies on the Sequel System with Circulomics high molecular weight DNA extraction for microbes

ASM Microbe 2018

2018

Abstract +

Background: Recent developments with Nanobind technology from Circulomics provide an elegant high molecular weight (HMW) DNA extraction solution to sequencing genomes from Gram-positive and -negative microbes. Nanobind is a nanostructured magnetic disk that can be used for rapid extraction of HMW DNA from diverse sample types including cultured cells, blood, plant nuclei, and bacteria. Processing can be performed manually or through automation using common instruments and can be completed in less than 1 hour for most sample types. Methods: We have validated several critical workflow steps for generating high quality microbial genome assemblies in a high throughput environment in a new streamlined microbial multiplexing workflow, which enables high-volume and cost-effective sequencing of up to 16 microbe samples totaling 30 Mb in genome size on a single SMRT Cell 1M using a target of 10 kb shear. Results: Here we share data demonstrating these new capabilities using isolates relevant to high throughput sequencing applications, including Shigella, common foodborne pathogens (Listeria, Salmonella), and species often seen in hospital settings (Klebsiella, Staphylococcus). We consistently achieved complete de novo microbial assemblies in =5 chromosomal contigs with minimum quality scores of QV40 (99.99% accuracy) using data from a single SMRTbell library, run on a single SMRT Cell 1M with the PacBio Sequel System, and analyzed with newly streamlined SMRT Analysis assembly methods. Conclusions: This simplified workflow helps to accelerate microbial genome characterization, requiring fewer than 24 hours for sample preparation and 10 hours for data collection.

Population-scale discovery of structural variants with PacBio SMRT Sequencing

One Million Genomes

2018

Abstract +

Structural variants (SVs) – genomic differences =50 base pairs – are few by count compared to single nucleotide variants (SNVs) and indels but include most of the base pairs that differ between two humans.

Characterizing the pan-genome of maize with PacBio SMRT Sequencing

PAG Asia 2018

2018

Abstract +

Maize is an amazingly diverse crop. A study in 2005 demonstrated that half of the genome sequence and one-third of the gene content between two inbred lines of maize were not shared. This diversity, which is more than two orders of magnitude larger than the diversity found between humans and chimpanzees, highlights the inability of a single reference genome to represent the full pan-genome of maize and all its variants. Here we present and review several efforts to characterize the complete diversity within maize using the highly accurate long reads of PacBio Single Molecule, Real-Time (SMRT) Sequencing. These methods provide a framework for a pan-genomic approach that can be applied to studies of a wide variety of important crop species.

Best practices for whole genome sequencing using the Sequel System

Association of Biomolecular Resource Facilities 2018 Annual Conference

2018

Abstract +

Plant and animal whole genome sequencing has proven to be challenging, particularly due to genome size, high density of repetitive elements and heterozygosity. The Sequel System delivers long reads, high consensus accuracy and uniform coverage, enabling more complete, accurate, and contiguous assemblies of these large complex genomes. The latest Sequel chemistry increases yield up to 8 Gb per SMRT Cell for long insert libraries >20 kb and up to 10 Gb per SMRT Cell for libraries >40 kb. In addition, the recently released SMRTbell Express Template Prep Kit reduces the time (~3 hours) and DNA input (~3 µg), making the workflow easy to use for multi- SMRT Cell projects. Here, we recommend the best practices for whole genome sequencing and de novo assembly of complex plant and animal genomes. Guidelines for constructing large-insert SMRTbell libraries (>30 kb) to generate optimal read lengths and yields using the latest Sequel chemistry are presented. We also describe ways to maximize library yield per preparation from as littles as 3 µg of sheared genomic DNA. The combination of these advances makes plant and animal whole genome sequencing a practical application of the Sequel System.

Allelic specificity of immunoglobulin heavy chain (IGH@) translocation in B-cell acute lymphoblastic leukemia (B-ALL) unveiled by long-read sequencing

American Association for Cancer Research Annual Meeting 2018

2018

Abstract +

Oncogenic fusion of IGH-DUX4 has recently been reported as a hallmark that defines a B-ALL subtype present in up to 7% of adolescents and young adults B-ALL. The translocation of DUX4 into IGH results in aberrant activation of DUX4 by hijacking the intronic IGH enhancer (Eµ). How IGH-DUX4 translocation interplays with IGH allelic exclusion was never been explored. We investigated this in Nalm6 B-ALL cell line, using long-read (PacBio Iso-Seq method and 10X Chromium WGS), short-read (Illumina total stranded RNA and WGS), epigenome (H3K27ac ChIP-seq, ATAC-seq) and 3-D genome (Hi-C, H3K27ac HiChIP, Capture-C).

Scalability and reliability improvements to the Iso-Seq analysis pipeline enables higher throughput sequencing of full-length cancer transcripts

American Association for Cancer Research Annual Meeting 2018

2018

Abstract +

The characterization of gene expression profiles via transcriptome sequencing has proven to be an important tool for characterizing how genomic rearrangements in cancer affect the biological pathways involved in cancer progression and treatment response. More recently, better resolution of transcript isoforms has shown that this additional level of information may be useful in stratifying patients into cancer subtypes with different outcomes and responses to treatment.1 The Iso-Seq protocol developed at PacBio is uniquely able to deliver full-length, high-quality cDNA sequences, allowing the unambiguous determination of splice variants, identifying potential biomarkers and yielding new insights into gene fusion events. Recent improvements to the Iso-Seq bioinformatics pipeline increases the speed and scalability of data analysis while boosting the reliability of isoform detection and cross-platform usability. Here we report evaluation of Sequel Iso-Seq runs of human UHRR samples with spiked-in synthetic RNA controls and show that the new pipeline is more CPU efficient and recovers more human and synthetic isoforms while reducing the number of false positives. We also share the results of sequencing the well-characterized HCC-1954 breast cancer and normal breast cell lines, which will be made publicly available. Combined with the recent simplification of the Iso-Seq sample preparation2, the new analysis pipeline completes a streamlined workflow for revealing the most comprehensive picture of transcriptomes at the throughput needed to characterize cancer samples.

The role of androgen receptor variant AR-V9 in prostate cancer

American Association for Cancer Research Annual Meeting 2018

2018

Abstract +

The expression of androgen receptor (AR) variants is a frequent, yet poorly-understood mechanism of clinical resistance to AR-targeted therapy for castration-resistant prostate cancer (CRPC). Among the multiple AR variants expressed in CRPC, AR-V7 is considered the most clinically-relevant AR variant due to broad expression in CRPC, correlations of AR-V7 expression with clinical resistance, and growth inhibition when AR-V7 is knocked down in CRPC models. Therefore, efforts are under way to develop strategies for monitoring and inhibiting AR-V7 in castration-resistant prostate cancer (CRPC). The aim of this study was to understand whether other AR variants are co-expressed with AR-V7 and promote resistance to AR-targeted therapies. To test this, we utilized RNA-seq to characterize AR expression in CRPC models. RNA-seq revealed the frequent coexpression of AR-V9 and AR-V7 in multiple CRPC models and metastases. Furthermore, long-read single-molecule real-time (SMRT) sequencing of AR isoforms revealed that AR-V7 and AR-V9 shared a common 3’terminal cryptic exon. To test this, we knocked down AR-V7 in prostate cancer cell lines and confirmed that AR-V9 mRNA and protein expression were also impacted. In reporter assays with AR-responsive promoters, AR-V9 functioned as a constitutive activator of androgen/AR signaling. Similarly, infection of AR-V9 lentiviral construct in LNCaP cells induced androgen-independent cell proliferation. In conclusion, these data implicate co-expression of AR-V9 with AR-V7 as an important component of constitutive AR signaling and therapeutic resistance in CRPC.

Full-length cDNA sequencing of prokaryotic transcriptome and metatranscriptome samples

DOE Joint Genome Institute UGM 2018

2018

Abstract +

Next-generation sequencing has become a useful tool for studying transcriptomes. However, these methods typically rely on sequencing short fragments of cDNA, then attempting to assemble the pieces into full-length transcripts. Here, we describe a method that uses PacBio long reads to sequence full-length cDNAs from individual transcriptomes and metatranscriptome samples. We have adapted the PacBio Iso-Seq protocol for use with prokaryotic samples by incorporating RNA polyadenylation and rRNA-depletion steps. In conjunction with SMRT Sequencing, which has average readlengths of 10-15 kb, we are able to sequence entire transcripts, including polycistronic RNAs, in a single read. Here, we show full-length bacterial transcriptomes with the ability to visualize transcription of operons. In the area of metatranscriptomics, long reads reveal unambiguous gene sequences without the need for post-sequencing transcript assembly. We also show full-length bacterial transcripts sequenced after being treated with NEB’s Cappable-Seq, which is an alternative method for depleting rRNA and enriching for full-length transcripts with intact 5’ ends. Combining Cappable-Seq with PacBio long reads allows for the detection of transcription start sites, with the additional benefit of sequencing entire transcripts.

Amplification-free targeted enrichment and SMRT Sequencing of repeat-expansion genomic regions

Advances in Genome Biology and Technology

2018

Abstract +

Targeted sequencing has proven to be an economical means of obtaining sequence information for one or more defined regions of a larger genome. However, most target enrichment methods are reliant upon some form of amplification. Amplification removes the epigenetic marks present in native DNA, and some genomic regions, such as those with extreme GC content and repetitive sequences, are recalcitrant to faithful amplification. Yet, a large number of genetic disorders are caused by expansions of repeat sequences. Furthermore, for some disorders, methylation status has been shown to be a key factor in the mechanism of disease.

Full-length transcript profiling with the Iso-Seq method for improved genome annotations

Advances in Genome Biology and Technology

2018

Abstract +

Incomplete annotation of genomes represents a major impediment to understanding biological processes, functional differences between species, and evolutionary mechanisms. Often, genes that are large, embedded within duplicated genomic regions, or associated with repeats are difficult to study by short-read expression profiling and assembly. In addition, most genes in eukaryotic organisms produce alternatively spliced isoforms, broadening the diversity of proteins encoded by the genome, which are difficult to resolve with short-read methods. Short-read RNA sequencing (RNA-seq) works by physically shearing transcript isoforms into smaller pieces and bioinformatically reassembling them, leaving opportunity for misassembly or incomplete capture of the full diversity of isoforms from genes of interest. In contrast, Single Molecule, Real-Time (SMRT) Sequencing directly sequences full-length transcripts without the need for assembly and imputation. Here we apply the Iso-Seq method (long-read RNA sequencing) to detect full-length isoforms and the new IsoPhase algorithm to retrieve allele-specific isoform information for two avian models of vocal learning, Anna’s hummingbird (Calypte anna) and zebra finch (Taeniopygia guttata).

High-quality de novo genome assembly and intra-individual mitochondrial instability in the critically endangered kakapo

Advances in Genome Biology and Technology

2018

Abstract +

The kakapo (Strigops habroptila) is a large, flightless parrot endemic to New Zealand. It is highly endangered with only ~150 individuals remaining, and intensive conservation efforts are underway to save this iconic species from extinction. These include genetic studies to understand critical genes relevant to fertility, adaptation and disease resistance, and genetic diversity across the remaining population for future breeding program decisions. To aid with these efforts, we have generated a high-quality de novo genome assembly using PacBio long-read sequencing. Using the new diploid-aware FALCON-Unzip assembler, the resulting genome of 1.06 Gb has a contig N50 of 5.6 Mb (largest contig 29.3 Mb), >350-times more contiguous compared to a recent short-read assembly of a closely related parrot (kea) species. We highlight the benefits of the higher contiguity and greater completeness of the kakapo genome assembly through examples of fully resolved genes important in wildlife conservation (contrasted with fragmented and incomplete gene resolution in short-read assemblies), in some cases even providing sequence for regions orthologous to gaps of missing sequence in the chicken reference genome. We also highlight the complete resolution of the kakapo mitochondrial genome, fully containing the mitochondrial control region which is missing from the previous dedicated kakapomitochondrial genome NCBI entry. For this region, we observed a marked heterogeneity in the number of tandem repeats in different mtDNAmolecules from a single bird tissue, highlighting the enhanced molecular resolution uniquely afforded by long-read, single-molecule PacBio sequencing.

Mitochondrial DNA sequencing using PacBio SMRT technology

Advances in Genome Biology and Technology

2018

Abstract +

Mitochondrial DNA (mtDNA) is a compact, double-stranded circular genome of 16,569 bp with a cytosine-rich light (L) chain and a guanine-rich heavy (H) chain. mtDNA mutations have been increasingly recognized as important contributors to an array of human diseases such as Parkinson’s disease, Alzheimer’s disease, colorectal cancer and Kearns–Sayre syndrome. mtDNA mutations can affect all of the 1000-10,000 copies of the mitochondrial genome present in a cell (homoplasmic mutation) or only a subset of copies (heteroplasmic mutation). The ratio of normal to mutant mtDNAs within cells is a significant factor in whether mutations will result in disease, as well as the clinical presentation, penetrance, and severity of the phenotype. Over time, heteroplasmic mutations can become homoplastic due to differential replication and random assortment. Full characterization of the mitochondrial genome would involve detection of not only homoplastic but heteroplasmic mutations, as well as complete phasing. Previously, we sequenced human mtDNA on the PacBio RS II System with two partially overlapping amplicons. Here, we present amplification-free, full-length sequencing of linearized mtDNA using the Sequel System. Full-length sequencing allows variant phasing along the entire mitochondrial genome, identification of heteroplasmic variants, and detection of epigenetic modifications that are lost in amplicon-based methods.

Multiplexed complete microbial genomes on the Sequel System

Advances in Genome Biology and Technology

2018

Abstract +

Microbes play an important role in nearly every part of our world, as they affect human health, our environment, agriculture, and aid in waste management. Complete closed genome sequences, which have become the gold standard with PacBio long-read sequencing, can be key to understanding microbial functional characteristics. However, input requirements, consumables costs, and the labor required to prepare and sequence a microbial genome have in the past put PacBio sequencing out of reach for some larger projects. We have developed a multiplexed library prep approach that is simple, fast, and cost-effective, and can produce 4 to 16 closed bacterial genomes from one Sequel SMRT Cell. Additionally, we are introducing a streamlined analysis pipeline for processing multiplexed genome sequence data through de novo HGAP assembly, making the entire process easy for lab personnel to perform. Here we present the entire workflow from shearing through assembly, with times for each step. We show HGAP assembly results with single or very few contigs from bacteria from different size genomes, sequenced without or with size selection. These data illustrate the benefits and potential of the PacBio multiplexed library prep and the Sequel System for sequencing large numbers of microbial genomes.

Best practices for diploid assembly of complex genomes using PacBio: A case study of Cascade Hops

Plant and Animal Genomes XXVI Conference

2018

Abstract +

A high quality reference genome is an essential resource for plant and animal breeding and functional and evolutionary studies. The common hop (Humulus lupulus, Cannabaceae) is an economically important crop plant used to flavor and preserve beer. Its genome is large (flow cytometrybased estimates of diploid length >5.4Gb1), highly repetitive, and individual plants display high levels of heterozygosity, which make assembly of an accurate and contiguous reference genome challenging with conventional short-read methods. We present a contig assembly of Cascade Hops using PacBio long reads and the diploid genome assembler, FALCON-Unzip2. The assembly has dramatically improved contiguity and completeness over earlier short-read assemblies. The genome is primarily assembled as haplotypes due to the outbred nature of the organism. We explore patterns of haplotype divergence across the assembly and present strategies to deduplicate haplotypes prior to scaffolding