Menu
July 19, 2019  |  

Chromosome-level assembly of Arabidopsis thaliana Ler reveals the extent of translocation and inversion polymorphisms.

Resequencing or reference-based assemblies reveal large parts of the small-scale sequence variation. However, they typically fail to separate such local variation into colinear and rearranged variation, because they usually do not recover the complement of large-scale rearrangements, including transpositions and inversions. Besides the availability of hundreds of genomes of diverse Arabidopsis thaliana accessions, there is so far only one full-length assembled genome: the reference sequence. We have assembled 117 Mb of the A. thaliana Landsberg erecta (Ler) genome into five chromosome-equivalent sequences using a combination of short Illumina reads, long PacBio reads, and linkage information. Whole-genome comparison against the reference sequence revealed 564 transpositions and 47 inversions comprising ~3.6 Mb, in addition to 4.1 Mb of nonreference sequence, mostly originating from duplications. Although rearranged regions are not different in local divergence from colinear regions, they are drastically depleted for meiotic recombination in heterozygotes. Using a 1.2-Mb inversion as an example, we show that such rearrangement-mediated reduction of meiotic recombination can lead to genetically isolated haplotypes in the worldwide population of A. thaliana Moreover, we found 105 single-copy genes, which were only present in the reference sequence or the Ler assembly, and 334 single-copy orthologs, which showed an additional copy in only one of the genomes. To our knowledge, this work gives first insights into the degree and type of variation, which will be revealed once complete assemblies will replace resequencing or other reference-dependent methods.


July 19, 2019  |  

Rapid functional and sequence differentiation of a tandemly repeated species-specific multigene family in Drosophila.

Gene clusters of recently duplicated genes are hotbeds for evolutionary change. However, our understanding of how mutational mechanisms and evolutionary forces shape the structural and functional evolution of these clusters is hindered by the high sequence identity among the copies, which typically results in their inaccurate representation in genome assemblies. The presumed testis-specific, chimeric gene Sdic originated, and tandemly expanded in Drosophila melanogaster, contributing to increased male-male competition. Using various types of massively parallel sequencing data, we studied the organization, sequence evolution, and functional attributes of the different Sdic copies. By leveraging long-read sequencing data, we uncovered both copy number and order differences from the currently accepted annotation for the Sdic region. Despite evidence for pervasive gene conversion affecting the Sdic copies, we also detected signatures of two episodes of diversifying selection, which have contributed to the evolution of a variety of C-termini and miRNA binding site compositions. Expression analyses involving RNA-seq datasets from 59 different biological conditions revealed distinctive expression breadths among the copies, with three copies being transcribed in females, opening the possibility to a sexually antagonistic effect. Phenotypic assays using Sdic knock-out strains indicated that should this antagonistic effect exist, it does not compromise female fertility. Our results strongly suggest that the genome consolidation of the Sdic gene cluster is more the result of a quick exploration of different paths of molecular tinkering by different copies than a mere dosage increase, which could be a recurrent evolutionary outcome in the presence of persistent sexual selection. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 19, 2019  |  

Targeted capture and sequencing of gene-sized DNA molecules.

Targeted capture provides an efficient and sensitive means for sequencing specific genomic regions in a high-throughput manner. To date, this method has mostly been used to capture exons from the genome (the exome) using short insert libraries and short-read sequencing technology, enabling the identification of genetic variants or new members of large gene families. Sequencing larger molecules results in the capture of whole genes, including intronic and intergenic sequences that are typically more polymorphic and allow the resolution of the gene structure of homologous genes, which are often clustered together on the chromosome. Here, we describe an improved method for the capture and single-molecule sequencing of DNA molecules as large as 7 kb by means of size selection and optimized PCR conditions. Our approach can be used to capture, sequence, and distinguish between similar members of the NB-LRR gene family-key genes in plant immune systems.


July 19, 2019  |  

Sequencing of Australian wild rice genomes reveals ancestral relationships with domesticated rice.

The related A genome species of the Oryza genus are the effective gene pool for rice. Here, we report draft genomes for two Australian wild A genome taxa: O. rufipogon-like population, referred to as Taxon A, and O. meridionalis-like population, referred to as Taxon B. These two taxa were sequenced and assembled by integration of short- and long-read next-generation sequencing (NGS) data to create a genomic platform for a wider rice gene pool. Here, we report that, despite the distinct chloroplast genome, the nuclear genome of the Australian Taxon A has a sequence that is much closer to that of domesticated rice (O. sativa) than to the other Australian wild populations. Analysis of 4643 genes in the A genome clade showed that the Australian annual, O. meridionalis, and related perennial taxa have the most divergent (around 3 million years) genome sequences relative to domesticated rice. A test for admixture showed possible introgression into the Australian Taxon A (diverged around 1.6 million years ago) especially from the wild indica/O. nivara clade in Asia. These results demonstrate that northern Australia may be the centre of diversity of the A genome Oryza and suggest the possibility that this might also be the centre of origin of this group and represent an important resource for rice improvement.© 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


July 19, 2019  |  

The impact of third generation genomic technologies on plant genome assembly.

Since the introduction of next generation sequencing, plant genome assembly projects do not need to rely on dedicated research facilities or community-wide consortia anymore, even individual research groups can sequence and assemble the genomes they are interested in. However, such assemblies are typically not based on the entire breadth of genomic technologies including genetic and physical maps and their contiguities tend to be low compared to the full-length gold standard reference sequences. Recently emerging third generation genomic technologies like long-read sequencing or optical mapping promise to bridge this quality gap and enable simple and cost-effective solutions for chromosomal-level assemblies.


July 19, 2019  |  

Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome.

The decrease in sequencing cost and increased sophistication of assembly algorithms for short-read platforms has resulted in a sharp increase in the number of species with genome assemblies. However, these assemblies are highly fragmented, with many gaps, ambiguities, and errors, impeding downstream applications. We demonstrate current state of the art for de novo assembly using the domestic goat (Capra hircus) based on long reads for contig formation, short reads for consensus validation, and scaffolding by optical and chromatin interaction mapping. These combined technologies produced what is, to our knowledge, the most continuous de novo mammalian assembly to date, with chromosome-length scaffolds and only 649 gaps. Our assembly represents a ~400-fold improvement in continuity due to properly assembled gaps, compared to the previously published C. hircus assembly, and better resolves repetitive structures longer than 1 kb, representing the largest repeat family and immune gene complex yet produced for an individual of a ruminant species.


July 19, 2019  |  

Characterization of hepatitis C virus (HCV) envelope diversification from acute to chronic infection within a sexually transmitted HCV cluster by using single-molecule, real-time sequencing.

In contrast to other available next-generation sequencing platforms, PacBio single-molecule, real-time (SMRT) sequencing has the advantage of generating long reads albeit with a relatively higher error rate in unprocessed data. Using this platform, we longitudinally sampled and sequenced the hepatitis C virus (HCV) envelope genome region (1,680 nucleotides [nt]) from individuals belonging to a cluster of sexually transmitted cases. All five subjects were coinfected with HIV-1 and a closely related strain of HCV genotype 4d. In total, 50 samples were analyzed by using SMRT sequencing. By using 7 passes of circular consensus sequencing, the error rate was reduced to 0.37%, and the median number of sequences was 612 per sample. A further reduction of insertions was achieved by alignment against a sample-specific reference sequence. However, in vitro recombination during PCR amplification could not be excluded. Phylogenetic analysis supported close relationships among HCV sequences from the four male subjects and subsequent transmission from one subject to his female partner. Transmission was characterized by a strong genetic bottleneck. Viral genetic diversity was low during acute infection and increased upon progression to chronicity but subsequently fluctuated during chronic infection, caused by the alternate detection of distinct coexisting lineages. SMRT sequencing combines long reads with sufficient depth for many phylogenetic analyses and can therefore provide insights into within-host HCV evolutionary dynamics without the need for haplotype reconstruction using statistical algorithms.IMPORTANCE Next-generation sequencing has revolutionized the study of genetically variable RNA virus populations, but for phylogenetic and evolutionary analyses, longer sequences than those generated by most available platforms, while minimizing the intrinsic error rate, are desired. Here, we demonstrate for the first time that PacBio SMRT sequencing technology can be used to generate full-length HCV envelope sequences at the single-molecule level, providing a data set with large sequencing depth for the characterization of intrahost viral dynamics. The selection of consensus reads derived from at least 7 full circular consensus sequencing rounds significantly reduced the intrinsic high error rate of this method. We used this method to genetically characterize a unique transmission cluster of sexually transmitted HCV infections, providing insight into the distinct evolutionary pathways in each patient over time and identifying the transmission-associated genetic bottleneck as well as fluctuations in viral genetic diversity over time, accompanied by dynamic shifts in viral subpopulations. Copyright © 2017 American Society for Microbiology.


July 19, 2019  |  

Comparative genomics reveals the diversity of restriction-modification systems and DNA methylation sites in Listeria monocytogenes.

Listeria monocytogenes is a bacterial pathogen that is found in a wide variety of anthropogenic and natural environments. Genome sequencing technologies are rapidly becoming a powerful tool in facilitating our understanding of how genotype, classification phenotypes, and virulence phenotypes interact to predict the health risks of individual bacterial isolates. Currently, 57 closed L. monocytogenes genomes are publicly available, representing three of the four phylogenetic lineages, and they suggest that L. monocytogenes has high genomic synteny. This study contributes an additional 15 closed L. monocytogenes genomes that were used to determine the associations between the genome and methylome with host invasion magnitude. In contrast to previous findings, large chromosomal inversions and rearrangements were detected in five isolates at the chromosome terminus and within rRNA genes, including a previously undescribed inversion within rRNA-encoding regions. Each isolate’s epigenome contained highly diverse methyltransferase recognition sites, even within the same serotype and methylation pattern. Eleven strains contained a single chromosomally encoded methyltransferase, one strain contained two methylation systems (one system on a plasmid), and three strains exhibited no methylation, despite the occurrence of methyltransferase genes. In three isolates a new, unknown DNA modification was observed in addition to diverse methylation patterns, accompanied by a novel methylation system. Neither chromosome rearrangement nor strain-specific patterns of epigenome modification observed within virulence genes were correlated with serotype designation, clonal complex, or in vitro infectivity. These data suggest that genome diversity is larger than previously considered in L. monocytogenes and that as more genomes are sequenced, additional structure and methylation novelty will be observed in this organism.Listeria monocytogenes is the causative agent of listeriosis, a disease which manifests as gastroenteritis, meningoencephalitis, and abortion. Among Salmonella, Escherichia coli, Campylobacter, and Listeria-causing the most prevalent foodborne illnesses-infection by L. monocytogenes carries the highest mortality rate. The ability of L. monocytogenes to regulate its response to various harsh environments enables its persistence and transmission. Small-scale comparisons of L. monocytogenes focusing solely on genome contents reveal a highly syntenic genome yet fail to address the observed diversity in phenotypic regulation. This study provides a large-scale comparison of 302 L. monocytogenes isolates, revealing the importance of the epigenome and restriction-modification systems as major determinants of L. monocytogenes phylogenetic grouping and subsequent phenotypic expression. Further examination of virulence genes of select outbreak strains reveals an unprecedented diversity in methylation statuses despite high degrees of genome conservation. Copyright © 2017 American Society for Microbiology.


July 19, 2019  |  

Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation.

Long-read single-molecule sequencing has revolutionized de novo genome assembly and enabled the automated reconstruction of reference-quality genomes. However, given the relatively high error rates of such technologies, efficient and accurate assembly of large repeats and closely related haplotypes remains challenging. We address these issues with Canu, a successor of Celera Assembler that is specifically designed for noisy single-molecule sequences. Canu introduces support for nanopore sequencing, halves depth-of-coverage requirements, and improves assembly continuity while simultaneously reducing runtime by an order of magnitude on large genomes versus Celera Assembler 8.2. These advances result from new overlapping and assembly algorithms, including an adaptive overlapping strategy based on tf-idf weighted MinHash and a sparse assembly graph construction that avoids collapsing diverged repeats and haplotypes. We demonstrate that Canu can reliably assemble complete microbial genomes and near-complete eukaryotic chromosomes using either PacBio or Oxford Nanopore technologies, and achieves a contig NG50 of greater than 21 Mbp on both human and Drosophila melanogaster PacBio datasets. For assembly structures that cannot be linearly represented, Canu provides graph-based assembly outputs in graphical fragment assembly (GFA) format for analysis or integration with complementary phasing and scaffolding techniques. The combination of such highly resolved assembly graphs with long-range scaffolding information promises the complete and automated assembly of complex genomes. Published by Cold Spring Harbor Laboratory Press.


July 19, 2019  |  

Genomic structure of the horse major histocompatibility complex class II region resolved using PacBio long-read sequencing technology.

The mammalian Major Histocompatibility Complex (MHC) region contains several gene families characterized by highly polymorphic loci with extensive nucleotide diversity, copy number variation of paralogous genes, and long repetitive sequences. This structural complexity has made it difficult to construct a reliable reference sequence of the horse MHC region. In this study, we used long-read single molecule, real-time (SMRT) sequencing technology from Pacific Biosciences (PacBio) to sequence eight Bacterial Artificial Chromosome (BAC) clones spanning the horse MHC class II region. The final assembly resulted in a 1,165,328?bp continuous gap free sequence with 35 manually curated genomic loci of which 23 were considered to be functional and 12 to be pseudogenes. In comparison to the MHC class II region in other mammals, the corresponding region in horse shows extraordinary copy number variation and different relative location and directionality of the Eqca-DRB, -DQA, -DQB and -DOB loci. This is the first long-read sequence assembly of the horse MHC class II region with rigorous manual gene annotation, and it will serve as an important resource for association studies of immune-mediated equine diseases and for evolutionary analysis of genetic diversity in this region.


July 19, 2019  |  

Single-molecule sequencing resolves the detailed structure of complex satellite DNA loci in Drosophila melanogaster.

Highly repetitive satellite DNA (satDNA) repeats are found in most eukaryotic genomes. SatDNAs are rapidly evolving and have roles in genome stability and chromosome segregation. Their repetitive nature poses a challenge for genome assembly and makes progress on the detailed study of satDNA structure difficult. Here, we use single-molecule sequencing long reads from Pacific Biosciences (PacBio) to determine the detailed structure of all major autosomal complex satDNA loci in Drosophila melanogaster, with a particular focus on the 260-bp and Responder satellites. We determine the optimal de novo assembly methods and parameter combinations required to produce a high-quality assembly of these previously unassembled satDNA loci and validate this assembly using molecular and computational approaches. We determined that the computationally intensive PBcR-BLASR assembly pipeline yielded better assemblies than the faster and more efficient pipelines based on the MHAP hashing algorithm, and it is essential to validate assemblies of repetitive loci. The assemblies reveal that satDNA repeats are organized into large arrays interrupted by transposable elements. The repeats in the center of the array tend to be homogenized in sequence, suggesting that gene conversion and unequal crossovers lead to repeat homogenization through concerted evolution, although the degree of unequal crossing over may differ among complex satellite loci. We find evidence for higher-order structure within satDNA arrays that suggest recent structural rearrangements. These assemblies provide a platform for the evolutionary and functional genomics of satDNAs in pericentric heterochromatin. © 2017 Khost et al.; Published by Cold Spring Harbor Laboratory Press.


July 19, 2019  |  

New advances in sequence assembly

Extract It may be hard to believe, but the idea of sequence assembly is around 40 years old. Consider this pair of quotes from Rodger Staden (Staden 1979): “With modern fast sequencing techniques and suitable computer programs it is now possible to sequence whole genomes without the need of restriction maps.” “If the 5′ end of the sequence from one gel reading is the same as the 3′ end of the sequence from another the data is said to overlap. If the overlap is of sufficient length to distinguish it from being a repeat in the sequence the two sequences must be contiguous. The data from the two gel readings can then be joined to form one longer continuous sequence.” Replace “gel reading” with “read” and these sentences would go unnoticed in the introduction of any paper today. Here you can also see the birth of jargon that now pervades the field: overlaps between reads form contigs (contiguous sequences). Just a few months later, Gingeras et al. (1979) described “Computer programs for the assembly of DNA sequences.” It all sounds so modern, until the discussion mentions FORTRAN code stored on magnetic tapes. How, then, can we fill an entire special issue of Genome Research with “new advances” so many years later? To me, this reflects the beauty of the problem—simple enough to be stated in a single paragraph, yet complex enough to sustain a field of research for decades. This dichotomy is common to many famous computational problems; indeed, mathematical formulations of sequence assembly fall into a class of problems known as “NP-hard” that do not admit an easy solution (Medvedev et al. 2007). There is another reason for continued advances in sequence assembly—advances in sequencing technology. As evident from the Staden quotes above, the first assembly methods were …


July 19, 2019  |  

A new chicken genome assembly provides insight into avian genome structure.

The importance of the Gallus gallus (chicken) as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3), built from combined long single molecule sequencing technology, finished BACs, and improved physical maps. In overall assembled bases, we see a gain of 183 Mb, including 16.4 Mb in placed chromosomes with a corresponding gain in the percentage of intact repeat elements characterized. Of the 1.21 Gb genome, we include three previously missing autosomes, GGA30, 31, and 33, and improve sequence contig length 10-fold over the previous Gallus_gallus-4.0. Despite the significant base representation improvements made, 138 Mb of sequence is not yet located to chromosomes. When annotated for gene content, Gallus_gallus-5.0 shows an increase of 4679 annotated genes (2768 noncoding and 1911 protein-coding) over those in Gallus_gallus-4.0. We also revisited the question of what genes are missing in the avian lineage, as assessed by the highest quality avian genome assembly to date, and found that a large fraction of the original set of missing genes are still absent in sequenced bird species. Finally, our new data support a detailed map of MHC-B, encompassing two segments: one with a highly stable gene copy number and another in which the gene copy number is highly variable. The chicken model has been a critical resource for many other fields of study, and this new reference assembly will substantially further these efforts. Copyright © 2017 Warren et al.


July 19, 2019  |  

The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution.

The domesticated sunflower, Helianthus annuus L., is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought. Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives, including numerous extremophile species. Here we report a high-quality reference for the sunflower genome (3.6 gigabases), together with extensive transcriptomic data from vegetative and floral organs. The genome mostly consists of highly similar, related sequences and required single-molecule real-time sequencing technologies for successful assembly. Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade and a sunflower-specific whole-genome duplication around 29 million years ago. An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks. We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years. This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs.


July 19, 2019  |  

SMRT genome assembly corrects reference errors, resolving the genetic basis of virulence in Mycobacterium tuberculosis.

The genetic basis of virulence in Mycobacterium tuberculosis has been investigated through genome comparisons of virulent (H37Rv) and attenuated (H37Ra) sister strains. Such analysis, however, relies heavily on the accuracy of the sequences. While the H37Rv reference genome has had several corrections to date, that of H37Ra is unmodified since its original publication.Here, we report the assembly and finishing of the H37Ra genome from single-molecule, real-time (SMRT) sequencing. Our assembly reveals that the number of H37Ra-specific variants is less than half of what the Sanger-based H37Ra reference sequence indicates, undermining and, in some cases, invalidating the conclusions of several studies. PE_PPE family genes, which are intractable to commonly-used sequencing platforms because of their repetitive and GC-rich nature, are overrepresented in the set of genes in which all reported H37Ra-specific variants are contradicted. Further, one of the sequencing errors in H37Ra masks a true variant in common with the clinical strain CDC1551 which, when considered in the context of previous work, corresponds to a sequencing error in the H37Rv reference genome.Our results constrain the set of genomic differences possibly affecting virulence by more than half, which focuses laboratory investigation on pertinent targets and demonstrates the power of SMRT sequencing for producing high-quality reference genomes.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.