Menu
July 7, 2019  |  

Complete genome sequence of lanthionine-producing Lactobacillus brevis strain 100D8, generated by PacBio sequencing.

Lactobacillus brevis strain 100D8 was isolated from rye silage and showed rapid acidification ability in vitro and antifungal activity against mycotoxin- producing fungi. We report here the complete genome sequence of L. brevis strain 100D8, which has a circular chromosome (2,351,988 bp, 2,304 coding sequences [CDSs]) and three plasmids (45,061 bp, 57 CDSs; 40,740 bp, 40 CDSs; and 39,943 bp, 57 CDSs).


July 7, 2019  |  

BELLA: Berkeley Efficient Long-Read to Long-Read Aligner and Overlapper

De novo assembly is the process of reconstructing genomes from DNA fragments (reads), which may contain redundancy and errors. Longer reads simplify assembly and improve contiguity of the output, but current long-read technologies come with high error rates. A crucial step of de novo genome assembly for long reads consists of finding overlapping reads. We present Berkeley Long-Read to Long-Read Aligner and Overlapper (BELLA), which implement a novel approach to compute overlaps using Sparse Generalized Matrix Multiplication (SpGEMM). We present a probabilistic model which demonstrates the soundness of using short, fixed length k-mers to detect overlaps, avoiding expensive pairwise alignment of all reads against all others. We then introduce a notion of reliable k-mers based on our probabilistic model. The use of reliable k-mers eliminates both the k-mer set explosion that would otherwise happen with highly erroneous reads and the spurious overlaps due to k-mers originating from repetitive regions. Finally, we present a new method to separate true alignments from false positives depending on the alignment score. Using this methodology, which is employed in BELLAtextquoterights precise mode, the probability of false positives drops exponentially as the length of overlap between sequences increases. On simulated data, BELLA achieves an average of 2.26% higher recall than state-of-the-art tools in its sensitive mode and 18.90% higher precision than state-of-the-art tools in its precise mode, while being performance competitive.


July 7, 2019  |  

Bridging gaps in transposable element research with single-molecule and single-cell technologies

More than half of the genomic landscape in humans and many other organisms is composed of repetitive DNA, which mostly derives from transposable elements (TEs) and viruses. Recent technological advances permit improved assessment of the repetitive content across genomes and newly developed molecular assays have revealed important roles of TEs and viruses in host genome evolution and organization. To update on our current understanding of TE biology and to promote new interdisciplinary strategies for the TE research community, leading experts gathered for the 2nd Uppsala Transposon Symposium on October 4–5, 2018 in Uppsala, Sweden. Using cutting-edge single-molecule and single-cell approaches, research on TEs and other repeats has entered a new era in biological and biomedical research.


July 7, 2019  |  

Hardwood tree genomics: Unlocking woody plant biology.

Woody perennial angiosperms (i.e., hardwood trees) are polyphyletic in origin and occur in most angiosperm orders. Despite their independent origins, hardwoods have shared physiological, anatomical, and life history traits distinct from their herbaceous relatives. New high-throughput DNA sequencing platforms have provided access to numerous woody plant genomes beyond the early reference genomes of Populus and Eucalyptus, references that now include willow and oak, with pecan and chestnut soon to follow. Genomic studies within these diverse and undomesticated species have successfully linked genes to ecological, physiological, and developmental traits directly. Moreover, comparative genomic approaches are providing insights into speciation events while large-scale DNA resequencing of native collections is identifying population-level genetic diversity responsible for variation in key woody plant biology across and within species. Current research is focused on developing genomic prediction models for breeding, defining speciation and local adaptation, detecting and characterizing somatic mutations, revealing the mechanisms of gender determination and flowering, and application of systems biology approaches to model complex regulatory networks underlying quantitative traits. Emerging technologies such as single-molecule, long-read sequencing is being employed as additional woody plant species, and genotypes within species, are sequenced, thus enabling a comparative (“evo-devo”) approach to understanding the unique biology of large woody plants. Resource availability, current genomic and genetic applications, new discoveries and predicted future developments are illustrated and discussed for poplar, eucalyptus, willow, oak, chestnut, and pecan.


July 7, 2019  |  

The Draft Genome of the MD-2 Pineapple

The main challenge in assembling plant genome is its ploidy level, repeats content, and polymorphism. The second-generation sequencing delivered the throughput and the accuracy that is crucial to whole-genome sequencing but insufficient and remained challenging for some plant species. It is known that genomes produced by next-gen- eration sequencing produced small contigs that would inflate the number of annotated genes (Varshney et al. 2011) and missed on the transposable elements that are abun- dant in plant genome due to their repetitive nature (Michael and Jackson 2013).


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.