X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

The conservation of polyol transporter proteins and their involvement in lichenized Ascomycota.

In lichen symbiosis, polyol transfer from green algae is important for acquiring the fungal carbon source. However, the existence of polyol transporter genes and their correlation with lichenization remain unclear. Here, we report candidate polyol transporter genes selected from the genome of the lichen-forming fungus (LFF) Ramalina conduplicans. A phylogenetic analysis using characterized polyol and monosaccharide transporter proteins and hypothetical polyol transporter proteins of R. conduplicans and various ascomycetous fungi suggested that the characterized yeast’ polyol transporters form multiple clades with the polyol transporter-like proteins selected from the diverse ascomycetous taxa. Thus, polyol transporter genes are widely conserved among Ascomycota, regardless…

Read More »

Sunday, September 22, 2019

Lentinula edodes genome survey and postharvest transcriptome analysis.

Lentinula edodes is a popular, cultivated edible and medicinal mushroom. Lentinula edodes is susceptible to postharvest problems, such as gill browning, fruiting body softening, and lentinan degradation. We constructed a de novo assembly draft genome sequence and performed gene prediction for Lentinula edodesDe novo assembly was carried out using short reads from paired-end and mate-paired libraries and by using long reads by PacBio, resulting in a contig number of 1,951 and an N50 of 1 Mb. Furthermore, we predicted genes by Augustus using transcriptome sequencing (RNA-seq) data from the whole life cycle of Lentinula edodes, resulting in 12,959 predicted genes.…

Read More »

Sunday, September 22, 2019

Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing.

We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and a very low false positive rate. The results show that IDP-fusion will be useful for unraveling the complexity of multiple fusion splices and fusion isoforms within tumorigenesis-relevant fusion…

Read More »

Sunday, September 22, 2019

Long-read transcriptome data for improved gene prediction in Lentinula edodes

Lentinula edodes is one of the most popular edible mushrooms in the world and contains useful medicinal components such as lentinan. The whole-genome sequence of L. edodes has been determined with the objective of discovering candidate genes associated with agronomic traits, but experimental verification of gene models with correction of gene prediction errors is lacking. To improve the accuracy of gene prediction, we produced 12.6 Gb of long-read transcriptome data of variable lengths using PacBio single-molecule real-time (SMRT) sequencing and generated 36,946 transcript clusters with an average length of 2.2 kb. Evidence-driven gene prediction on the basis of long- and…

Read More »

Sunday, September 22, 2019

Constructing a ‘chromonome’ of yellowtail (Seriola quinqueradiata) for comparative analysis of chromosomal rearrangements.

To investigate chromosome evolution in fish species, we newly mapped 181 markers that allowed us to construct a yellowtail (Seriola quinqueradiata) radiation hybrid (RH) physical map with 1,713 DNA markers, which was far denser than a previous map, and we anchored thede novoassembled sequences onto the RH physical map. Finally, we mapped a total of 13,977 expressed sequence tags (ESTs) on a genome sequence assembly aligned with the physical map. Using the high-density physical map and anchored genome sequences, we accurately compared the yellowtail genome structure with the genome structures of five model fishes to identify characteristics of the yellowtail…

Read More »

Sunday, September 22, 2019

The genome sequence of the commercially cultivated mushroom Agrocybe aegerita reveals a conserved repertoire of fruiting-related genes and a versatile suite of biopolymer-degrading enzymes.

Agrocybe aegerita is an agaricomycete fungus with typical mushroom features, which is commercially cultivated for its culinary use. In nature, it is a saprotrophic or facultative pathogenic fungus causing a white-rot of hardwood in forests of warm and mild climate. The ease of cultivation and fructification on solidified media as well as its archetypal mushroom fruit body morphology render A. aegerita a well-suited model for investigating mushroom developmental biology.Here, the genome of the species is reported and analysed with respect to carbohydrate active genes and genes known to play a role during fruit body formation. In terms of fruit body…

Read More »

Sunday, September 22, 2019

Virgibacillus phasianinus sp. nov., a halophilic bacterium isolated from faeces of a Swinhoe’s pheasant, Lophura swinhoii.

A rod-shaped, Gram-stain-positive, motile and aerobic bacterium, designated LM2416T, was isolated from faeces of Lophuras winhoii living in Seoul Grand Park, Gyeonggi-do, Republic of Korea. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain LM2416T belonged to the genus Virgibacillus, sharing high 16S rRNA gene sequence similarities to Virgibacillus necropolis LMG 19488T (99.0?%), Virgibacillus carmonensis LMG 20964T (98.4?%), Virgibacillus arcticus Hal 1T (98.3?%) and Virgibacillus flavescens S1-20T (97.9?%). The isolate grew at 10-30?°C, pH 6-7 and 0-20?% (w/v) NaCl. Optimal growth was observed at 30?°C, pH 6-7 and 10?% (w/v) NaCl. The major fatty acid was anteiso-C15?:?0. Polar…

Read More »

Subscribe for blog updates:

Archives