April 21, 2020  |  

The conservation of polyol transporter proteins and their involvement in lichenized Ascomycota.

In lichen symbiosis, polyol transfer from green algae is important for acquiring the fungal carbon source. However, the existence of polyol transporter genes and their correlation with lichenization remain unclear. Here, we report candidate polyol transporter genes selected from the genome of the lichen-forming fungus (LFF) Ramalina conduplicans. A phylogenetic analysis using characterized polyol and monosaccharide transporter proteins and hypothetical polyol transporter proteins of R. conduplicans and various ascomycetous fungi suggested that the characterized yeast’ polyol transporters form multiple clades with the polyol transporter-like proteins selected from the diverse ascomycetous taxa. Thus, polyol transporter genes are widely conserved among Ascomycota, regardless of lichen-forming status. In addition, the phylogenetic clusters suggested that LFFs belonging to Lecanoromycetes have duplicated proteins in each cluster. Consequently, the number of sequences similar to characterized yeast’ polyol transporters were evaluated using the genomes of 472 species or strains of Ascomycota. Among these, LFFs belonging to Lecanoromycetes had greater numbers of deduced polyol transporter proteins. Thus, various polyol transporters are conserved in Ascomycota and polyol transporter genes appear to have expanded during the evolution of Lecanoromycetes. Copyright © 2019 British Mycological Society. Published by Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Lentinula edodes genome survey and postharvest transcriptome analysis.

Lentinula edodes is a popular, cultivated edible and medicinal mushroom. Lentinula edodes is susceptible to postharvest problems, such as gill browning, fruiting body softening, and lentinan degradation. We constructed a de novo assembly draft genome sequence and performed gene prediction for Lentinula edodesDe novo assembly was carried out using short reads from paired-end and mate-paired libraries and by using long reads by PacBio, resulting in a contig number of 1,951 and an N50 of 1 Mb. Furthermore, we predicted genes by Augustus using transcriptome sequencing (RNA-seq) data from the whole life cycle of Lentinula edodes, resulting in 12,959 predicted genes. This analysis revealed that Lentinula edodes lacks lignin peroxidase. To reveal genes involved in the loss of quality of Lentinula edodes postharvest fruiting bodies, transcriptome analysis was carried out using serial analysis of gene expression (SuperSAGE). This analysis revealed that many cell wall-related enzymes are upregulated after harvest, such as ß-1,3-1,6-glucan-degrading enzymes in glycoside hydrolase (GH) families GH5, GH16, GH30, GH55, and GH128, and thaumatin-like proteins. In addition, we found that several chitin-related genes are upregulated, such as putative chitinases in GH family 18, exochitinases in GH20, and a putative chitosanase in GH family 75. The results suggest that cell wall-degrading enzymes synergistically cooperate for rapid fruiting body autolysis. Many putative transcription factor genes were upregulated postharvest, such as genes containing high-mobility-group (HMG) domains and zinc finger domains. Several cell death-related proteins were also upregulated postharvest.IMPORTANCE Our data collectively suggest that there is a rapid fruiting body autolysis system in Lentinula edodes The genes for the loss of postharvest quality newly found in this research will be targets for the future breeding of strains that keep fresh longer than present strains. De novoLentinula edodes genome assembly data will be used for the construction of a complete Lentinula edodes chromosome map for future breeding. Copyright © 2017 American Society for Microbiology.


September 22, 2019  |  

Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing.

We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and a very low false positive rate. The results show that IDP-fusion will be useful for unraveling the complexity of multiple fusion splices and fusion isoforms within tumorigenesis-relevant fusion genes. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.


September 22, 2019  |  

Long-read transcriptome data for improved gene prediction in Lentinula edodes

Lentinula edodes is one of the most popular edible mushrooms in the world and contains useful medicinal components such as lentinan. The whole-genome sequence of L. edodes has been determined with the objective of discovering candidate genes associated with agronomic traits, but experimental verification of gene models with correction of gene prediction errors is lacking. To improve the accuracy of gene prediction, we produced 12.6 Gb of long-read transcriptome data of variable lengths using PacBio single-molecule real-time (SMRT) sequencing and generated 36,946 transcript clusters with an average length of 2.2 kb. Evidence-driven gene prediction on the basis of long- and short-read RNA sequencing data was performed; a total of 16,610 protein-coding genes were predicted with error correction. Of the predicted genes, 42.2% were verified to be covered by full-length transcript clusters. The raw reads have been deposited in the NCBI SRA database under accession number PRJNA396788.


September 22, 2019  |  

Constructing a ‘chromonome’ of yellowtail (Seriola quinqueradiata) for comparative analysis of chromosomal rearrangements.

To investigate chromosome evolution in fish species, we newly mapped 181 markers that allowed us to construct a yellowtail (Seriola quinqueradiata) radiation hybrid (RH) physical map with 1,713 DNA markers, which was far denser than a previous map, and we anchored thede novoassembled sequences onto the RH physical map. Finally, we mapped a total of 13,977 expressed sequence tags (ESTs) on a genome sequence assembly aligned with the physical map. Using the high-density physical map and anchored genome sequences, we accurately compared the yellowtail genome structure with the genome structures of five model fishes to identify characteristics of the yellowtail genome. Between yellowtail and Japanese medaka (Oryzias latipes), almost all regions of the chromosomes were conserved and some blocks comprising several markers were translocated. Using the genome information of the spotted gar (Lepisosteus oculatus) as a reference, we further documented syntenic relationships and chromosomal rearrangements that occurred during evolution in four other acanthopterygian species (Japanese medaka, zebrafish, spotted green pufferfish and three-spined stickleback). The evolutionary chromosome translocation frequency was 1.5-2-times higher in yellowtail than in medaka, pufferfish, and stickleback.


September 22, 2019  |  

The genome sequence of the commercially cultivated mushroom Agrocybe aegerita reveals a conserved repertoire of fruiting-related genes and a versatile suite of biopolymer-degrading enzymes.

Agrocybe aegerita is an agaricomycete fungus with typical mushroom features, which is commercially cultivated for its culinary use. In nature, it is a saprotrophic or facultative pathogenic fungus causing a white-rot of hardwood in forests of warm and mild climate. The ease of cultivation and fructification on solidified media as well as its archetypal mushroom fruit body morphology render A. aegerita a well-suited model for investigating mushroom developmental biology.Here, the genome of the species is reported and analysed with respect to carbohydrate active genes and genes known to play a role during fruit body formation. In terms of fruit body development, our analyses revealed a conserved repertoire of fruiting-related genes, which corresponds well to the archetypal fruit body morphology of this mushroom. For some genes involved in fruit body formation, paralogisation was observed, but not all fruit body maturation-associated genes known from other agaricomycetes seem to be conserved in the genome sequence of A. aegerita. In terms of lytic enzymes, our analyses suggest a versatile arsenal of biopolymer-degrading enzymes that likely account for the flexible life style of this species. Regarding the amount of genes encoding CAZymes relevant for lignin degradation, A. aegerita shows more similarity to white-rot fungi than to litter decomposers, including 18 genes coding for unspecific peroxygenases and three dye-decolourising peroxidase genes expanding its lignocellulolytic machinery.The genome resource will be useful for developing strategies towards genetic manipulation of A. aegerita, which will subsequently allow functional genetics approaches to elucidate fundamentals of fruiting and vegetative growth including lignocellulolysis.


September 22, 2019  |  

Virgibacillus phasianinus sp. nov., a halophilic bacterium isolated from faeces of a Swinhoe’s pheasant, Lophura swinhoii.

A rod-shaped, Gram-stain-positive, motile and aerobic bacterium, designated LM2416T, was isolated from faeces of Lophuras winhoii living in Seoul Grand Park, Gyeonggi-do, Republic of Korea. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain LM2416T belonged to the genus Virgibacillus, sharing high 16S rRNA gene sequence similarities to Virgibacillus necropolis LMG 19488T (99.0?%), Virgibacillus carmonensis LMG 20964T (98.4?%), Virgibacillus arcticus Hal 1T (98.3?%) and Virgibacillus flavescens S1-20T (97.9?%). The isolate grew at 10-30?°C, pH 6-7 and 0-20?% (w/v) NaCl. Optimal growth was observed at 30?°C, pH 6-7 and 10?% (w/v) NaCl. The major fatty acid was anteiso-C15?:?0. Polar lipids were composed of phosphatidylglycerol, diphosphatidylglycerol, three unknown phospholipids and two unknown aminophospholipids. The main menaquinone was MK-7. Strain LM2416T had alanine, lysine, glutamic acid, glycine and aspartic acid as cell-wall amino acids and ribose as a cell-wall sugar. The whole genome sequences of strain LM2416T and V. necropolis KCTC 3820T were sequenced by PacBio RS II sequencing. The genome sequence-based G+C?content of strain LM2416T was 39.5?mol%. The orthologous average nucleotide identity value, showing genetic relatedness between strain LM2416T and V. necropolis KCTC 3820T, was 78.3?%. Based on the phylogenetic, biochemical, chemotaxonomic and genotypic data presented in this study, strain LM2416T is considered to represent a novel species of the genus Virgibacillus, for which the name Virgibacillus phasianinus is proposed. The type strain is LM2416T (=KCTC 33927T=JCM 32144T).


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.