Menu
September 22, 2019  |  

Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing.

Zea mays is an important genetic model for elucidating transcriptional networks. Uncertainties about the complete structure of mRNA transcripts limit the progress of research in this system. Here, using single-molecule sequencing technology, we produce 111,151 transcripts from 6 tissues capturing ~70% of the genes annotated in maize RefGen_v3 genome. A large proportion of transcripts (57%) represent novel, sometimes tissue-specific, isoforms of known genes and 3% correspond to novel gene loci. In other cases, the identified transcripts have improved existing gene models. Averaging across all six tissues, 90% of the splice junctions are supported by short reads from matched tissues. In addition, we identified a large number of novel long non-coding RNAs and fusion transcripts and found that DNA methylation plays an important role in generating various isoforms. Our results show that characterization of the maize B73 transcriptome is far from complete, and that maize gene expression is more complex than previously thought.


September 22, 2019  |  

Diverse antibiotic resistance genes in dairy cow manure.

Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. IMPORTANCE The increasing prevalence of antibiotic resistance among bacteria is one of the most intractable challenges in 21st-century public health. The origins of resistance are complex, and a better understanding of the impacts of antibiotics used on farms would produce a more robust platform for public policy. Microbiomes of farm animals are reservoirs of antibiotic resistance genes, which may affect distribution of antibiotic resistance genes in human pathogens. Previous studies have focused on antibiotic resistance genes in manures of animals subjected to intensive antibiotic use, such as pigs and chickens. Cow manure has received less attention, although it is commonly used in crop production. Here, we report the discovery of novel and diverse antibiotic resistance genes in the cow microbiome, demonstrating that it is a significant reservoir of antibiotic resistance genes. The genomic resource presented here lays the groundwork for understanding the dispersal of antibiotic resistance from the agroecosystem to other settings.


September 22, 2019  |  

Atmospheric N deposition alters connectance, but not functional potential among saprotrophic bacterial communities.

The use of co-occurrence patterns to investigate interactions between micro-organisms has provided novel insight into organismal interactions within microbial communities. However, anthropogenic impacts on microbial co-occurrence patterns and ecosystem function remain an important gap in our ecological knowledge. In a northern hardwood forest ecosystem located in Michigan, USA, 20 years of experimentally increased atmospheric N deposition has reduced forest floor decay and increased soil C storage. This ecosystem-level response occurred concomitantly with compositional changes in saprophytic fungi and bacteria. Here, we investigated the influence of experimental N deposition on biotic interactions among forest floor bacterial assemblages by employing phylogenetic and molecular ecological network analysis. When compared to the ambient treatment, the forest floor bacterial community under experimental N deposition was less rich, more phylogenetically dispersed and exhibited a more clustered co-occurrence network topology. Together, our observations reveal the presence of increased biotic interactions among saprotrophic bacterial assemblages under future rates of N deposition. Moreover, they support the hypothesis that nearly two decades of experimental N deposition can modify the organization of microbial communities and provide further insight into why anthropogenic N deposition has reduced decomposition, increased soil C storage and accelerated phenolic DOC production in our field experiment. © 2015 John Wiley & Sons Ltd.


September 22, 2019  |  

Assessment of an organ-specific de novo transcriptome of the nematode trap-crop, Solanum sisymbriifolium

Solanum sisymbriifolium, also known as “Litchi Tomato” or “Sticky Nightshade,” is an undomesticated and poorly researched plant related to potato and tomato. Unlike the latter species, S. sisymbriifolium induces eggs of the cyst nematode, Globodera pallida, to hatch and migrate into its roots, but then arrests further nematode maturation. In order to provide researchers with a partial blueprint of its genetic make-up so that the mechanism of this response might be identified, we used single molecule real time (SMRT) sequencing to compile a high quality de novo transcriptome of 41,189 unigenes drawn from individually sequenced bud, root, stem, and leaf RNA populations. Functional annotation and BUSCO analysis showed that this transcriptome was surprisingly complete, even though it represented genes expressed at a single time point. By sequencing the 4 organ libraries separately, we found we could get a reliable snapshot of transcript distributions in each organ. A divergent site analysis of the merged transcriptome indicated that this species might have undergone a recent genome duplication and re-diploidization. Further analysis indicated that the plant then retained a disproportionate number of genes associated with photosynthesis and amino acid metabolism in comparison to genes with characteristics of R-proteins or involved in secondary metabolism. The former processes may have given S. sisymbriifolium a bigger competitive advantage than the latter did. Copyright © 2018 Wixom et al.


September 22, 2019  |  

Contemporary evolution of a Lepidopteran species, Heliothis virescens, in response to modern agricultural practices.

Adaptation to human-induced environmental change has the potential to profoundly influence the genomic architecture of affected species. This is particularly true in agricultural ecosystems, where anthropogenic selection pressure is strong. Heliothis virescens primarily feeds on cotton in its larval stages, and US populations have been declining since the widespread planting of transgenic cotton, which endogenously expresses proteins derived from Bacillus thuringiensis (Bt). No physiological adaptation to Bt toxin has been found in the field, so adaptation in this altered environment could involve (i) shifts in host plant selection mechanisms to avoid cotton, (ii) changes in detoxification mechanisms required for cotton-feeding vs. feeding on other hosts or (iii) loss of resistance to previously used management practices including insecticides. Here, we begin to address whether such changes occurred in H. virescens populations between 1997 and 2012, as Bt-cotton cultivation spread through the agricultural landscape. For our study, we produced an H. virescens genome assembly and used this in concert with a ddRAD-seq-enabled genome scan to identify loci with significant allele frequency changes over the 15-year period. Genetic changes at a previously described H. virescens insecticide target of selection were detectable in our genome scan and increased our confidence in this methodology. Additional loci were also detected as being under selection, and we quantified the selection strength required to elicit observed allele frequency changes at each locus. Potential contributions of genes near loci under selection to adaptive phenotypes in the H. virescens cotton system are discussed.© 2017 John Wiley & Sons Ltd.


September 22, 2019  |  

Reference assembly and annotation of the Pyrenophora teres f. teres isolate 0-1.

Pyrenophora teres f.teres, the causal agent of net form net blotch (NFNB) of barley, is a destructive pathogen in barley-growing regions throughout the world. Typical yield losses due to NFNB range from 10 to 40%; however, complete loss has been observed on highly susceptible barley lines where environmental conditions favor the pathogen. Currently, genomic resources for this economically important pathogen are limited to a fragmented draft genome assembly and annotation, with limited RNA support of theP. teresf.teresisolate 0-1. This research presents an updated 0-1 reference assembly facilitated by long-read sequencing and scaffolding with the assistance of genetic linkage maps. Additionally, genome annotation was mediated by RNAseq analysis using three infection time points and a pure culture sample, resulting in 11,541 high-confidence gene models. The 0-1 genome assembly and annotation presented here now contains the majority of the repetitive content of the genome. Analysis of the 0-1 genome revealed classic characteristics of a “two-speed” genome, being compartmentalized into GC-equilibrated and AT-rich compartments. The assembly of repetitive AT-rich regions will be important for future investigation of genes known as effectors, which often reside in close proximity to repetitive regions. These effectors are responsible for manipulation of the host defense during infection. This updatedP. teresf.teresisolate 0-1 reference genome assembly and annotation provides a robust resource for the examination of the barley-P. teresf.tereshost-pathogen coevolution. Copyright © 2018 Wyatt et al.


September 22, 2019  |  

An ancient integration in a plant NLR is maintained as a trans-species polymorphism

Plant immune receptors are under constant selective pressure to maintain resistance to plant pathogens. Nucleotide-binding leucine-rich repeat (NLR) proteins are one class of cytoplasmic immune receptors whose genes commonly show signatures of adaptive evolution. While it is known that balancing selection contributes to maintaining high intraspecific allelic diversity, the evolutionary mechanism that influences the transmission of alleles during speciation remains unclear. The barley Mla locus has over 30 described alleles conferring isolate-specific resistance to barley powdery mildew and contains three NLR families (RGH1, RGH2, and RGH3). We discovered (using sequence capture and RNAseq) the presence of a novel integrated Exo70 domain in RGH2 in the Mla3 haplotype. Allelic variation across barley accessions includes presence/absence of the integrated domain in RGH2. Expanding our search to several Poaceae species, we found shared interspecific conservation in the RGH2-Exo70 integration. We hypothesise that balancing selection has maintained allelic variation at Mla as a trans-species polymorphism over 24 My, thus contributing to and preserving interspecific allelic diversity during speciation.


September 22, 2019  |  

Molecular characterization of NBS-LRR genes in the soybean Rsv3 locus reveals several divergent alleles that likely confer resistance to the soybean mosaic virus.

The divergence patterns of NBS – LRR genes in soybean Rsv3 locus were deciphered and several divergent alleles ( NBS_C, NBS_D and Columbia NBS_E ) were identified as the likely functional candidates of Rsv3. The soybean Rsv3 locus, which confers resistance to the soybean mosaic virus (SMV), has been previously mapped to a region containing five nucleotide binding site-leucine-rich repeats (NBS-LRR) genes (referred to as nbs_A-E) in Williams 82. In resistant cultivars, however, the number of NBS-LRR genes in this region and their divergence from susceptible alleles remain unclear. In the present study, we constructed and screened a bacterial artificial chromosome (BAC) library for an Rsv3-possessing cultivar, Zaoshu 18. Sequencing two positive BAC inserts on the Rsv3 locus revealed that Zaoshu 18 possesses the same gene content and order as Williams 82, but two of the NBS-LRR genes, NBS_C and NBS_D, exhibit distinct features that were not observed in the Williams 82 alleles. Obtaining these NBS-LRR genes from eight additional cultivars demonstrated that the NBS_A-D genes diverged into two different alleles: the nbs_A-D alleles were associated with the rsv3-type cultivars, whereas the NBS_A-D alleles were associated with the Rsv3-possessing cultivars. For the NBS_E gene, the cultivar Columbia possesses an allele (NBS_E) that differed from that in Zaoshu 18 and rsv3-type cultivars (nbs_E). Exchanged fragments were further detected on alleles of the NBS_C-E genes, suggesting that recombination is a major force responsible for allele divergence. Also, the LRR domains of the NBS_C-E genes exhibited extremely strong signals of positive selection. Overall, the divergence patterns of the NBS-LRR genes in Rsv3 locus elucidated by this study indicate that not only NBS_C but also NBS_D and Columbia NBS_E are likely functional alleles that confer resistance to SMV.


September 22, 2019  |  

Reference quality genome assemblies of three Parastagonospora nodorum isolates differing in virulence on wheat.

Parastagonospora nodorum, the causal agent of Septoria nodorum blotch in wheat, has emerged as a model necrotrophic fungal organism for the study of host-microbe interactions. To date, three necrotrophic effectors have been identified and characterized from this pathogen, including SnToxA, SnTox1, and SnTox3. Necrotrophic effector identification was greatly aided by the development of a draft genome of Australian isolate SN15 via Sanger sequencing, yet it remained largely fragmented. This research presents the development of nearly finished genomes of P. nodorum isolates Sn4, Sn2000, and Sn79-1087 using long-read sequencing technology. RNAseq analysis of isolate Sn4, consisting of eight time points covering various developmental and infection stages, mediated the annotation of 13,379 genes. Analysis of these genomes revealed large-scale polymorphism between the three isolates, including the complete absence of contig 23 from isolate Sn79-1087, and a region of genome expansion on contig 10 in isolates Sn4 and Sn2000. Additionally, these genomes exhibit the hallmark characteristics of a “two-speed” genome, being partitioned into two distinct GC-equilibrated and AT-rich compartments. Interestingly, isolate Sn79-1087 contains a lower proportion of AT-rich segments, indicating a potential lack of evolutionary hotspots. These newly sequenced genomes, consisting of telomere-to-telomere assemblies of nearly all 23 P. nodorum chromosomes, provide a robust foundation for the further examination of effector biology and genome evolution. Copyright © 2018 Richards et al.


September 22, 2019  |  

De novo assembly and phasing of dikaryotic genomes from two isolates of Puccinia coronata f. sp. avenae, the causal agent of oat crown rust.

Oat crown rust, caused by the fungus Pucinnia coronata f. sp. avenae, is a devastating disease that impacts worldwide oat production. For much of its life cycle, P. coronata f. sp. avenae is dikaryotic, with two separate haploid nuclei that may vary in virulence genotype, highlighting the importance of understanding haplotype diversity in this species. We generated highly contiguous de novo genome assemblies of two P. coronata f. sp. avenae isolates, 12SD80 and 12NC29, from long-read sequences. In total, we assembled 603 primary contigs for 12SD80, for a total assembly length of 99.16 Mbp, and 777 primary contigs for 12NC29, for a total length of 105.25 Mbp; approximately 52% of each genome was assembled into alternate haplotypes. This revealed structural variation between haplotypes in each isolate equivalent to more than 2% of the genome size, in addition to about 260,000 and 380,000 heterozygous single-nucleotide polymorphisms in 12SD80 and 12NC29, respectively. Transcript-based annotation identified 26,796 and 28,801 coding sequences for isolates 12SD80 and 12NC29, respectively, including about 7,000 allele pairs in haplotype-phased regions. Furthermore, expression profiling revealed clusters of coexpressed secreted effector candidates, and the majority of orthologous effectors between isolates showed conservation of expression patterns. However, a small subset of orthologs showed divergence in expression, which may contribute to differences in virulence between 12SD80 and 12NC29. This study provides the first haplotype-phased reference genome for a dikaryotic rust fungus as a foundation for future studies into virulence mechanisms in P. coronata f. sp. avenaeIMPORTANCE Disease management strategies for oat crown rust are challenged by the rapid evolution of Puccinia coronata f. sp. avenae, which renders resistance genes in oat varieties ineffective. Despite the economic importance of understanding P. coronata f. sp. avenae, resources to study the molecular mechanisms underpinning pathogenicity and the emergence of new virulence traits are lacking. Such limitations are partly due to the obligate biotrophic lifestyle of P. coronata f. sp. avenae as well as the dikaryotic nature of the genome, features that are also shared with other important rust pathogens. This study reports the first release of a haplotype-phased genome assembly for a dikaryotic fungal species and demonstrates the amenability of using emerging technologies to investigate genetic diversity in populations of P. coronata f. sp. avenae. Copyright © 2018 Miller et al.


September 22, 2019  |  

Dynamic evolution of a-gliadin prolamin gene family in homeologous genomes of hexaploid wheat.

Wheat Gli-2 loci encode complex groups of a-gliadin prolamins that are important for breadmaking, but also major triggers of celiac disease (CD). Elucidation of a-gliadin evolution provides knowledge to produce wheat with better end-use properties and reduced immunogenic potential. The Gli-2 loci contain a large number of tandemly duplicated genes and highly repetitive DNA, making sequence assembly of their genomic regions challenging. Here, we constructed high-quality sequences spanning the three wheat homeologous a-gliadin loci by aligning PacBio-based sequence contigs with BioNano genome maps. A total of 47 a-gliadin genes were identified with only 26 encoding intact full-length protein products. Analyses of a-gliadin loci and phylogenetic tree reconstruction indicate significant duplications of a-gliadin genes in the last ~2.5 million years after the divergence of the A, B and D genomes, supporting its rapid lineage-independent expansion in different Triticeae genomes. We showed that dramatic divergence in expression of a-gliadin genes could not be attributed to sequence variations in the promoter regions. The study also provided insights into the evolution of CD epitopes and identified a single indel event in the hexaploid wheat D genome that likely resulted in the generation of the highly toxic 33-mer CD epitope.


September 22, 2019  |  

Genomic diversity of Taylorella equigenitalis introduced into the United States from 1978 to 2012.

Contagious equine metritis is a disease of worldwide concern in equids. The United States is considered to be free of the disease although sporadic outbreaks have occurred over the last few decades that were thought to be associated with the importation of horses. The objective of this study was to create finished, reference quality genomes that characterize the diversity of Taylorella equigenitalis isolates introduced into the USA, and identify their differences. Five isolates of T. equigenitalis associated with introductions into the USA from unique sources were sequenced using both short and long read chemistries allowing for complete assembly and annotation. These sequences were compared to previously published genomes as well as the short read sequences of the 200 isolates in the National Veterinary Services Laboratories’ diagnostic repository to identify unique regions and genes, potential virulence factors, and characterize diversity. The 5 genomes varied in size by up to 100,000 base pairs, but averaged 1.68 megabases. The majority of that diversity in size can be explained by repeat regions and 4 main regions of difference, which ranged in size from 15,000 to 45,000 base pairs. The first region of difference contained mostly hypothetical proteins, the second contained the CRISPR, the third contained primarily hemagglutinin proteins, and the fourth contained primarily segments of a type IV secretion system. As expected and previously reported, little evidence of recombination was found within these genomes. Several additional areas of interest were also observed including a mechanism for streptomycin resistance and other virulence factors. A SNP distance comparison of the T. equigenitalis isolates and Mycobacterium tuberculosis complex (MTBC) showed that relatively, T. equigenitalis was a more diverse species than the entirety of MTBC.


September 22, 2019  |  

Cross-species comparison of the gut: Differential gene expression sheds light on biological differences in closely related tenebrionids.

The gut is one of the primary interfaces between an insect and its environment. Understanding gene expression profiles in the insect gut can provide insight into interactions with the environment as well as identify potential control methods for pests. We compared the expression profiles of transcripts from the gut of larval stages of two coleopteran insects, Tenebrio molitor and Tribolium castaneum. These tenebrionids have different life cycles, varying in the duration and number of larval instars. T. castaneum has a sequenced genome and has been a model for coleopterans, and we recently obtained a draft genome for T. molitor. We assembled gut transcriptome reads from each insect to their respective genomes and filtered mapped reads to RPKM>1, yielding 11,521 and 17,871 genes in the T. castaneum and T. molitor datasets, respectively. There were identical GO terms in each dataset, and enrichment analyses also identified shared GO terms. From these datasets, we compiled an ortholog list of 6907 genes; 45% of the total assembled reads from T. castaneum were found in the top 25 orthologs, but only 27% of assembled reads were found in the top 25 T. molitor orthologs. There were 2281 genes unique to T. castaneum, and 2088 predicted genes unique to T. molitor, although improvements to the T. molitor genome will likely reduce these numbers as more orthologs are identified. We highlight a few unique genes in T. castaneum or T. molitor that may relate to distinct biological functions. A large number of putative genes expressed in the larval gut with uncharacterized functions (36 and 68% from T. castaneum and T. molitor, respectively) support the need for further research. These data are the first step in building a comprehensive understanding of the physiology of the gut in tenebrionid insects, illustrating commonalities and differences that may be related to speciation and environmental adaptation. Published by Elsevier Ltd.


September 22, 2019  |  

The antibody loci of the domestic goat (Capra hircus).

The domestic goat (Capra hircus) is an important ruminant species both as a source of antibody-based reagents for research and biomedical applications and as an economically important animal for agriculture, particularly for developing nations that maintain most of the global goat population. Characterization of the loci encoding the goat immune repertoire would be highly beneficial for both vaccine and immune reagent development. However, in goat and other species whose reference genomes were generated using short-read sequencing technologies, the immune loci are poorly assembled as a result of their repetitive nature. Our recent construction of a long-read goat genome assembly (ARS1) has facilitated characterization of all three antibody loci with high confidence and comparative analysis to cattle. We observed broad similarity of goat and cattle antibody-encoding loci but with notable differences that likely influence formation of the functional antibody repertoire. The goat heavy-chain locus is restricted to only four functional and nearly identical IGHV genes, in contrast to the ten observed in cattle. Repertoire analysis indicates that light-chain usage is more balanced in goats, with greater representation of kappa light chains (~ 20-30%) compared to that in cattle (~ 5%). The present study represents the first characterization of the goat antibody loci and will help inform future investigations of their antibody responses to disease and vaccination.


September 22, 2019  |  

The complete replicons of 16 Ensifer meliloti strains offer insights into intra- and inter-replicon gene transfer, transposon-associated loci, and repeat elements.

Ensifer meliloti (formerly Rhizobium meliloti and Sinorhizobium meliloti) is a model bacterium for understanding legume-rhizobial symbioses. The tripartite genome of E. meliloti consists of a chromosome, pSymA and pSymB, and in some instances strain-specific accessory plasmids. The majority of previous sequencing studies have relied on the use of assemblies generated from short read sequencing, which leads to gaps and assembly errors. Here we used PacBio-based, long-read assemblies and were able to assemble, de novo, complete circular replicons. In this study, we sequenced, de novo-assembled and analysed 10 E. meliloti strains. Sequence comparisons were also done with data from six previously published genomes. We identified genome differences between the replicons, including mol% G+C and gene content, nucleotide repeats, and transposon-associated loci. Additionally, genomic rearrangements both within and between replicons were identified, providing insight into evolutionary processes at the structural level. There were few cases of inter-replicon gene transfer of core genes between the main replicons. Accessory plasmids were more similar to pSymA than to either pSymB or the chromosome, with respect to gene content, transposon content and G+C content. In our population, the accessory plasmids appeared to share an open genome with pSymA, which contains many nodulation- and nitrogen fixation-related genes. This may explain previous observations that horizontal gene transfer has a greater effect on the content of pSymA than pSymB, or the chromosome, and why some rhizobia show unstable nodulation phenotypes on legume hosts.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.