X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, November 12, 2020

Case Study: Pioneering a pan-genome reference collection

At DuPont Pioneer, DNA sequencing is paramount for R&D to reveal the genetic basis for traits of interest in commercial crops such as maize, soybean, sorghum, sunflower, alfalfa, canola, wheat, rice, and others. They cannot afford to wait the years it has historically taken for high-quality reference genomes to be produced. Nor can they rely on a single reference to represent the genetic diversity in its germplasm.

Read More »

Sunday, October 25, 2020

PAG PacBio Workshop: A fungal transcriptome uses complex and double-edged isoforms to split wood

From USDA’s Agricultural Research Service, molecular biologist Sean Gordon discusses the need for long-read sequencing to map an organism’s transcriptome. His team analyzed the wood-decaying fungus Plicaturopsis crispa first with short reads and found that they were missing exons and other important information. They switched to SMRT Sequencing so they could observe, rather than infer, full-length transcripts.

Read More »

Sunday, October 25, 2020

PAG Conference: Approaches taken, progress made, and enhanced utility of long read-based goat, swine, cattle and sheep reference genomes

Tim Smith, molecular geneticist at the USDA Agricutural Research Service (ARS) in Clay Center, Nebraska, and director of the U.S. Meat Animal Reseach Center Core Facilities, discusses the USDA’s efforts to improve the goat, swine, cattle, and sheep genomes through long read-based de novoassemblies scaffolded with a variety of approaches. Recent advances in long-read sequencing, combined with new technologies for scaffolding the resulting contigs, have made it possible to make a significant change in the quality of genome assemblies for a very small fraction of the price required to create the originals. Although a change of reference genomes incurs cost,…

Read More »

Sunday, October 25, 2020

PAG PacBio Workshop: A-maize-ing time for plant science – SMRT Sequencing of the maize genome and transcriptome

Doreen Ware introduces her team’s new assembly of maize, built with PacBio long-read sequencing and genome maps from BioNano Genomics. With a contig N50 of nearly 10 Mb and more complete information than any previous assembly, Ware says, “This is just an amazing time to be a plant scientist.” Her presentation includes a number of highlights from the new assembly, which may help crop improvement efforts for maize.

Read More »

Sunday, October 25, 2020

User Group Meeting: Application of genome assembly in Bovinae species

In this PacBio User Group Meeting presentation, Tim Smith of the USDA’s Agricultural Research Service describes efforts to generate reference-grade genome assemblies for various bovine species and analyze them to understand factors such as how selective breeding has affected certain breeds. Genome assemblies he presents span cattle, water buffalo, and gaur. Smith shows data for each assembly, noting that as data production shifted to the Sequel System, long-read PacBio data became even better at producing highly contiguous assemblies.

Read More »

Sunday, October 25, 2020

AGBT Presentation: Feed the World – Developing genomic resources for insects as food

In a push to develop insect-based food sources for people, Brenda Oppert from the USDA has been sequencing bug genomes with PacBio technology. Long reads are essential because of the highly repetitive sequences and large genomes. On the Sequel II System, a single SMRT Cell is sufficient to generate 350-fold coverage and produce a high-quality assembly for some of the insects she’s studying.

Read More »

Tuesday, April 21, 2020

Chromosome-length haplotigs for yak and cattle from trio binning assembly of an F1 hybrid

Background Assemblies of diploid genomes are generally unphased, pseudo-haploid representations that do not correctly reconstruct the two parental haplotypes present in the individual sequenced. Instead, the assembly alternates between parental haplotypes and may contain duplications in regions where the parental haplotypes are sufficiently different. Trio binning is an approach to genome assembly that uses short reads from both parents to classify long reads from the offspring according to maternal or paternal haplotype origin, and is thus helped rather than impeded by heterozygosity. Using this approach, it is possible to derive two assemblies from an individual, accurately representing both parental contributions…

Read More »

Tuesday, April 21, 2020

Genome assembly provides insights into the genome evolution and flowering regulation of orchardgrass.

Orchardgrass (Dactylis glomerata L.) is an important forage grass for cultivating livestock worldwide. Here, we report an ~1.84-Gb chromosome-scale diploid genome assembly of orchardgrass, with a contig N50 of 0.93 Mb, a scaffold N50 of 6.08 Mb and a super-scaffold N50 of 252.52 Mb, which is the first chromosome-scale assembled genome of a cool-season forage grass. The genome includes 40 088 protein-coding genes, and 69% of the assembled sequences are transposable elements, with long terminal repeats (LTRs) being the most abundant. The LTRretrotransposons may have been activated and expanded in the grass genome in response to environmental changes during the Pleistocene between 0 and…

Read More »

Tuesday, April 21, 2020

Rapid evolution of a-gliadin gene family revealed by analyzing Gli-2 locus regions of wild emmer wheat.

a-Gliadins are a major group of gluten proteins in wheat flour that contribute to the end-use properties for food processing and contain major immunogenic epitopes that can cause serious health-related issues including celiac disease (CD). a-Gliadins are also the youngest group of gluten proteins and are encoded by a large gene family. The majority of the gene family members evolved independently in the A, B, and D genomes of different wheat species after their separation from a common ancestral species. To gain insights into the origin and evolution of these complex genes, the genomic regions of the Gli-2 loci encoding…

Read More »

Tuesday, April 21, 2020

Updated assembly resource of Phytophthora ramorum Pr102 isolate incorporating long reads from PacBio sequencing.

The NA1 clonal lineage of Phytophthora ramorum is responsible for Sudden Oak Death, an epidemic that has devastated California’s coastal forest ecosystems. An NA1 isolate Pr102 derived from coast live oak in California was previously sequenced and reported with 65 Mb assembly containing 12 Mb gaps in 2576 scaffolds. Here we report an improved 70 Mb genome in 1512 scaffolds with 6752 bp gaps after incorporating PacBio P5-C3 longreads. This assembly contains 19494 gene models (average gene length 2515 bp) compared to 16134 genes (average gene length of 1673 bp) in the previous version. We predicted 29 new RXLRs and…

Read More »

1 2 3 10

Subscribe for blog updates:

Archives