Menu
July 7, 2019  |  

Genome sequence of Ustilaginoidea virens IPU010, a rice pathogenic fungus causing false smut.

Ustilaginoidea virens is a rice pathogenic fungus that causes false smut disease, a disease that seriously damages the yield and quality of the grain. Analysis of the U. virens IPU010 33.6-Mb genome sequence will aid in the understanding of the pathogenicity of the strain, particularly in regard to effector proteins and secondary metabolic genes. Copyright © 2016 Kumagai et al.


July 7, 2019  |  

Complete genome sequence of Streptomyces parvulus 2297, integrating site-specifically with actinophage R4

Streptomyces parvulus 2297, which is a host for site-specific recombination according to actinophage R4, is derived from the type strain ATCC 12434. Species of S. parvulus are known as producers of polypeptide antibiotic actinomycins and have been considered for industrial applications. We herein report for the first time the complete genome sequence of S. parvulus 2297. Copyright © 2016 Nishizawa et al.


July 7, 2019  |  

Genome sequence and analysis of the Japanese morning glory Ipomoea nil.

Ipomoea is the largest genus in the family Convolvulaceae. Ipomoea nil (Japanese morning glory) has been utilized as a model plant to study the genetic basis of floricultural traits, with over 1,500 mutant lines. In the present study, we have utilized second- and third-generation-sequencing platforms, and have reported a draft genome of I. nil with a scaffold N50 of 2.88?Mb (contig N50 of 1.87?Mb), covering 98% of the 750?Mb genome. Scaffolds covering 91.42% of the assembly are anchored to 15 pseudo-chromosomes. The draft genome has enabled the identification and cataloguing of the Tpn1 family transposons, known as the major mutagen of I. nil, and analysing the dwarf gene, CONTRACTED, located on the genetic map published in 1956. Comparative genomics has suggested that a whole genome duplication in Convolvulaceae, distinct from the recent Solanaceae event, has occurred after the divergence of the two sister families.


July 7, 2019  |  

Crystal structures of the TRIC trimeric intracellular cation channel orthologues.

Ca(2+) release from the sarcoplasmic reticulum (SR) and endoplasmic reticulum (ER) is crucial for muscle contraction, cell growth, apoptosis, learning and memory. The trimeric intracellular cation (TRIC) channels were recently identified as cation channels balancing the SR and ER membrane potentials, and are implicated in Ca(2+) signaling and homeostasis. Here we present the crystal structures of prokaryotic TRIC channels in the closed state and structure-based functional analyses of prokaryotic and eukaryotic TRIC channels. Each trimer subunit consists of seven transmembrane (TM) helices with two inverted repeated regions. The electrophysiological, biochemical and biophysical analyses revealed that TRIC channels possess an ion-conducting pore within each subunit, and that the trimer formation contributes to the stability of the protein. The symmetrically related TM2 and TM5 helices are kinked at the conserved glycine clusters, and these kinks are important for the channel activity. Furthermore, the kinks of the TM2 and TM5 helices generate lateral fenestrations at each subunit interface. Unexpectedly, these lateral fenestrations are occupied with lipid molecules. This study provides the structural and functional framework for the molecular mechanism of this ion channel superfamily.


July 7, 2019  |  

Meeting report: mobile genetic elements and genome plasticity 2018

The Mobile Genetic Elements and Genome Plasticity conference was hosted by Keystone Symposia in Santa Fe, NM USA, February 11–15, 2018. The organizers were Marlene Belfort, Evan Eichler, Henry Levin and Lynn Maquat. The goal of this conference was to bring together scientists from around the world to discuss the function of transposable elements and their impact on host species. Central themes of the meeting included recent innovations in genome analysis and the role of mobile DNA in disease and evolution. The conference included 200 scientists who participated in poster presentations, short talks selected from abstracts, and invited talks. A total of 58 talks were organized into eight sessions and two workshops. The topics varied from mechanisms of mobilization, to the structure of genomes and their defense strategies to protect against transposable elements.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.