Menu
July 7, 2019  |  

New insights into the diversity of the genus Faecalibacterium.

Faecalibacterium prausnitzii is a commensal bacterium, ubiquitous in the gastrointestinal tracts of animals and humans. This species is a functionally important member of the microbiota and studies suggest it has an impact on the physiology and health of the host. F. prausnitzii is the only identified species in the genus Faecalibacterium, but a recent study clustered strains of this species in two different phylogroups. Here, we propose the existence of distinct species in this genus through the use of comparative genomics. Briefly, we performed analyses of 16S rRNA gene phylogeny, phylogenomics, whole genome Multi-Locus Sequence Typing (wgMLST), Average Nucleotide Identity (ANI), gene synteny, and pangenome to better elucidate the phylogenetic relationships among strains of Faecalibacterium. For this, we used 12 newly sequenced, assembled, and curated genomes of F. prausnitzii, which were isolated from feces of healthy volunteers from France and Australia, and combined these with published data from 5 strains downloaded from public databases. The phylogenetic analysis of the 16S rRNA sequences, together with the wgMLST profiles and a phylogenomic tree based on comparisons of genome similarity, all supported the clustering of Faecalibacterium strains in different genospecies. Additionally, the global analysis of gene synteny among all strains showed a highly fragmented profile, whereas the intra-cluster analyses revealed larger and more conserved collinear blocks. Finally, ANI analysis substantiated the presence of three distinct clusters-A, B, and C-composed of five, four, and four strains, respectively. The pangenome analysis of each cluster corroborated the classification of these clusters into three distinct species, each containing less variability than that found within the global pangenome of all strains. Here, we propose that comparison of pangenome subsets and their associated a values may be used as an alternative approach, together with ANI, in the in silico classification of new species. Altogether, our results provide evidence not only for the reconsideration of the phylogenetic and genomic relatedness among strains currently assigned to F. prausnitzii, but also the need for lineage (strain-based) differentiation of this taxon to better define how specific members might be associated with positive or negative host interactions.


July 7, 2019  |  

Diversity in grain amaranths and relatives distinguished by genotyping by sequencing (GBS).

The genotyping by sequencing (GBS) method has become a molecular marker technology of choice for many crop plants because of its simultaneous discovery and evaluation of a large number of single nucleotide polymorphisms (SNPs) and utility for germplasm characterization. Genome representation and complexity reduction are the basis for GBS fingerprinting and can vary by species based on genome size and other sequence characteristics. Grain amaranths are a set of three species that were domesticated in the New World to be high protein, pseudo-cereal grain crops. The goal of this research was to employ the GBS technique for diversity evaluation in grain amaranth accessions and close relatives from sixAmaranthusspecies and determine genetic differences and similarities between groupings. A total of 10,668 SNPs were discovered in 94 amaranth accessions withApeKI complexity reduction and 10X genome coverage Illumina sequencing. The majority of the SNPs were species specific with 4,568 and 3,082 for the two grain amaranths originating in Central AmericaAmaranthus cruentus and A. hypochondriacusand 3,284 found amongst bothA. caudatus, originally domesticated in South America, and its close relative,A. quitensis. The distance matrix based on shared alleles provided information on the close relationships of the two cultivated Central American species with each other and of the wild and cultivated South American species with each other, as distinguished from the outgroup with two wild species,A. powelliiandA. retroflexus. The GBS data also distinguished admixture between each pair of species and the geographical origins and seed colors of the accessions. The SNPs we discovered here can be used for marker development for future amaranth study.


July 7, 2019  |  

Mechanisms involved in acquisition of blaNDM genes by IncA/C2 and IncFIIY plasmids.

blaNDM genes confer carbapenem resistance and have been identified on transferable plasmids belonging to different incompatibility (Inc) groups. Here we present the complete sequences of four plasmids carrying a blaNDM gene, pKP1-NDM-1, pEC2-NDM-3, pECL3-NDM-1 and pEC4-NDM-6, from four clinical samples originating from four different patients. Different plasmids carry segments that align to different parts of the blaNDM region found on Acinetobacter plasmids. pKP1-NDM-1 and pEC2-NDM-3, from Klebsiella pneumoniae and Escherichia coli, respectively, were identified as type 1 IncA/C2 plasmids with almost identical backbones. Different regions carrying blaNDM are inserted in different locations in the antibiotic resistance island known as ARI-A and ISCR1 may have been involved in acquisition of blaNDM-3 by pEC2-NDM-3. pECL3-NDM-1 and pEC4-NDM-6, from Enterobacter cloacae and E. coli, respectively, have similar IncFIIY backbones but different regions carrying blaNDM are found in different locations. Tn3-derived Inverted-repeat Transposable Elements (TIME) appear to have been involved in acquisition of blaNDM-6 by pEC4-NDM-6 and the rmtC 16S rRNA methylase gene by IncFIIY plasmids. Characterisation of these plasmids further demonstrates that even very closely related plasmids may have acquired blaNDM genes by different mechanisms. These findings also illustrate the complex relationships between antimicrobial resistance genes, transposable elements and plasmids and provide insights into the possible routes for transmission of blaNDM genes amongst species of the Enterobacteriaceae family. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza.

Salvia miltiorrhiza Bunge (Danshen) is a medicinal plant of the Lamiaceae family, and its dried roots have long been used in traditional Chinese medicine with hydrophilic phenolic acids and tanshinones as pharmaceutically active components (Zhang et al., 2014; Xu et al., 2016). The first step of tanshinone biosynthesis is bicyclization of the general diterpene precursor (E,E,E)-geranylgeranyl diphosphate (GGPP) to copalyl diphosphate (CPP) by CPP synthases (CPSs), which is followed by a cyclization or rearrangement reaction catalyzed by kaurene synthase-like enzymes (KSL).


July 7, 2019  |  

Genome sequence of Propionibacterium acidipropionici ATCC 55737.

Propionibacterium acidipropionici produces propionic acid as its main fermentation product. Traditionally derived from fossil fuels, environmental and sustainable issues have revived the interest in producing propionic acid using biological resources. Here, we present the closed sequence of Propionibacterium acidipropionici ATCC 55737, an efficient propionic acid producer. Copyright © 2016 Luna-Flores et al.


July 7, 2019  |  

Complete genome sequence of Klebsiella quasipneumoniae subsp. similipneumoniae strain ATCC 700603.

Klebsiella quasipneumoniae subsp. similipneumoniae strain ATCC 700603, formerly known as K. pneumoniae K6, is known for producing extended-spectrum ß-lactamase (ESBL) enzymes that can hydrolyze oxyimino-ß-lactams, resulting in resistance to these drugs. We herein report the complete genome of strain ATCC 700603 and show that the ESBL genes are plasmid-encoded. Copyright © 2016 Elliott et al.


July 7, 2019  |  

Representing genetic variation with synthetic DNA standards.

The identification of genetic variation with next-generation sequencing is confounded by the complexity of the human genome sequence and by biases that arise during library preparation, sequencing and analysis. We have developed a set of synthetic DNA standards, termed ‘sequins’, that emulate human genetic features and constitute qualitative and quantitative spike-in controls for genome sequencing. Sequencing reads derived from sequins align exclusively to an artificial in silico reference chromosome, rather than the human reference genome, which allows them them to be partitioned for parallel analysis. Here we use this approach to represent common and clinically relevant genetic variation, ranging from single nucleotide variants to large structural rearrangements and copy-number variation. We validate the design and performance of sequin standards by comparison to examples in the NA12878 reference genome, and we demonstrate their utility during the detection and quantification of variants. We provide sequins as a standardized, quantitative resource against which human genetic variation can be measured and diagnostic performance assessed.


July 7, 2019  |  

Whole genome analysis of Yersinia ruckeri isolated over 27 years in Australia and New Zealand reveals geographical endemism over multiple lineages and recent evolution under host selection.

Yersinia ruckeri is a salmonid pathogen with widespread distribution in cool-temperate waters including Australia and New Zealand, two isolated environments with recently developed salmonid farming industries. Phylogenetic comparison of 58 isolates from Australia, New Zealand, USA, Chile, Finland and China based on non-recombinant core genome SNPs revealed multiple deep-branching lineages, with a most recent common ancestor estimated at 18?500 years BP (12?355-24?757 95% HPD) and evidence of Australasian endemism. Evolution within the Tasmanian Atlantic salmon serotype O1b lineage has been slow, with 63 SNPs describing the variance over 27 years. Isolates from the prevailing lineage are poorly/non-motile compared to a lineage pre-vaccination, introduced in 1997, which is highly motile but has not been isolated since from epizootics. A non-motile phenotype has arisen independently in Tasmania compared to Europe and USA through a frameshift in fliI, encoding the ATPase of the flagella cluster. We report for the first time lipopolysaccharide O-antigen serotype O2 isolates in Tasmania. This phenotype results from deletion of the O-antigen cluster and consequent loss of high-molecular-weight O-antigen. This phenomenon has occurred independently on three occasions on three continents (Australasia, North America and Asia) as O2 isolates from the USA, China and Tasmania share the O-antigen deletion but occupy distant lineages. Despite the European and North American origins of the Australasian salmonid stocks, the lineages of Y. ruckeri in Australia and New Zealand are distinct from those of the northern hemisphere, suggesting they are pre-existing ancient strains that have emerged and evolved with the introduction of susceptible hosts following European colonization.


July 7, 2019  |  

Oryza meridionalis NQ Ng

Oryza meridionalis is an AA genome species found in Northern Australia. Phylogenetic analysis places this as the most distant of the AA genome species from domesticated rice (Oryza sativa). This makes it a key genetic resource for rice improvement. A draft nuclear genome sequence is available, and also the chloroplast genome has been sequenced from many genotypes. The high amylose starch content in these taxa may be useful for developing new rice grain characteristics. Here we have reviewed the all the research advancements that are made till today on this species.


July 7, 2019  |  

The challenge of analyzing the sugarcane genome.

Reference genome sequences have become key platforms for genetics and breeding of the major crop species. Sugarcane is probably the largest crop produced in the world (in weight of crop harvested) but lacks a reference genome sequence. Sugarcane has one of the most complex genomes in crop plants due to the extreme level of polyploidy. The genome of modern sugarcane hybrids includes sub-genomes from two progenitors Saccharum officinarum and S. spontaneum with some chromosomes resulting from recombination between these sub-genomes. Advancing DNA sequencing technologies and strategies for genome assembly are making the sugarcane genome more tractable. Advances in long read sequencing have allowed the generation of a more complete set of sugarcane gene transcripts. This is supporting transcript profiling in genetic research. The progenitor genomes are being sequenced. A monoploid coverage of the hybrid genome has been obtained by sequencing BAC clones that cover the gene space of the closely related sorghum genome. The complete polyploid genome is now being sequenced and assembled. The emerging genome will allow comparison of related genomes and increase understanding of the functioning of this polyploidy system. Sugarcane breeding for traditional sugar and new energy and biomaterial uses will be enhanced by the availability of these genomic resources.


July 7, 2019  |  

GtTR: Bayesian estimation of absolute tandem repeat copy number using sequence capture and high throughput sequencing.

Tandem repeats comprise significant proportion of the human genome including coding and regulatory regions. They are highly prone to repeat number variation and nucleotide mutation due to their repetitive and unstable nature, making them a major source of genomic variation between individuals. Despite recent advances in high throughput sequencing, analysis of tandem repeats in the context of complex diseases is still hindered by technical limitations. We report a novel targeted sequencing approach, which allows simultaneous analysis of hundreds of repeats. We developed a Bayesian algorithm, namely – GtTR – which combines information from a reference long-read dataset with a short read counting approach to genotype tandem repeats at population scale. PCR sizing analysis was used for validation.We used a PacBio long-read sequenced sample to generate a reference tandem repeat genotype dataset with on average 13% absolute deviation from PCR sizing results. Using this reference dataset GtTR generated estimates of VNTR copy number with accuracy within 95% high posterior density (HPD) intervals of 68 and 83% for capture sequence data and 200X WGS data respectively, improving to 87 and 94% with use of a PCR reference. We show that the genotype resolution increases as a function of depth, such that the median 95% HPD interval lies within 25, 14, 12 and 8% of the its midpoint copy number value for 30X, 200X WGS, 395X and 800X capture sequence data respectively. We validated nine targets by PCR sizing analysis and genotype estimates from sequencing results correlated well with PCR results.The novel genotyping approach described here presents a new cost-effective method to explore previously unrecognized class of repeat variation in GWAS studies of complex diseases at the population level. Further improvements in accuracy can be obtained by improving accuracy of the reference dataset.


July 7, 2019  |  

Culture- and metagenomics-enabled analyses of the Methanosphaera genus reveals their monophyletic origin and differentiation according to genome size.

The genus Methanosphaera is a well-recognized but poorly characterized member of the mammalian gut microbiome, and distinctive from Methanobrevibacter smithii for its ability to induce a pro-inflammatory response in humans. Here we have used a combination of culture- and metagenomics-based approaches to expand the representation and information for the genus, which has supported the examination of their phylogeny and physiological capacity. Novel isolates of the genus Methanosphaera were recovered from bovine rumen digesta and human stool, with the bovine isolate remarkable for its large genome size relative to other Methanosphaera isolates from monogastric hosts. To substantiate this observation, we then recovered seven high-quality Methanosphaera-affiliated population genomes from ruminant and human gut metagenomic datasets. Our analyses confirm a monophyletic origin of Methanosphaera spp. and that the colonization of monogastric and ruminant hosts favors representatives of the genus with different genome sizes, reflecting differences in the genome content needed to persist in these different habitats.


July 7, 2019  |  

Meeting report: mobile genetic elements and genome plasticity 2018

The Mobile Genetic Elements and Genome Plasticity conference was hosted by Keystone Symposia in Santa Fe, NM USA, February 11–15, 2018. The organizers were Marlene Belfort, Evan Eichler, Henry Levin and Lynn Maquat. The goal of this conference was to bring together scientists from around the world to discuss the function of transposable elements and their impact on host species. Central themes of the meeting included recent innovations in genome analysis and the role of mobile DNA in disease and evolution. The conference included 200 scientists who participated in poster presentations, short talks selected from abstracts, and invited talks. A total of 58 talks were organized into eight sessions and two workshops. The topics varied from mechanisms of mobilization, to the structure of genomes and their defense strategies to protect against transposable elements.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.