X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Transcriptional initiation of a small RNA, not R-loop stability, dictates the frequency of pilin antigenic variation in Neisseria gonorrhoeae.

Neisseria gonorrhoeae, the sole causative agent of gonorrhea, constitutively undergoes diversification of the Type IV pilus. Gene conversion occurs between one of the several donor silent copies located in distinct loci and the recipient pilE gene, encoding the major pilin subunit of the pilus. A guanine quadruplex (G4) DNA structure and a cis-acting sRNA (G4-sRNA) are located upstream of the pilE gene and both are required for pilin antigenic variation (Av). We show that the reduced sRNA transcription lowers pilin Av frequencies. Extended transcriptional elongation is not required for Av, since limiting the transcript to 32 nt allows for normal…

Read More »

Tuesday, April 21, 2020

Fast and accurate long-read assembly with wtdbg2

Existing long-read assemblers require tens of thousands of CPU hours to assemble a human genome and are being outpaced by sequencing technologies in terms of both throughput and cost. We developed a novel long-read assembler wtdbg2 that, for human data, is tens of times faster than published tools while achieving comparable contiguity and accuracy. It represents a significant algorithmic advance and paves the way for population-scale long-read assembly in future.

Read More »

Tuesday, April 21, 2020

Schizophrenia risk variants influence multiple classes of transcripts of sorting nexin 19 (SNX19).

Genome-wide association studies (GWAS) have identified many genomic loci associated with risk for schizophrenia, but unambiguous identification of the relationship between disease-associated variants and specific genes, and in particular their effect on risk conferring transcripts, has proven difficult. To better understand the specific molecular mechanism(s) at the schizophrenia locus in 11q25, we undertook cis expression quantitative trait loci (cis-eQTL) mapping for this 2 megabase genomic region using postmortem human brain samples. To comprehensively assess the effects of genetic risk upon local expression, we evaluated multiple transcript features: genes, exons, and exon-exon junctions in multiple brain regions-dorsolateral prefrontal cortex (DLPFC), hippocampus,…

Read More »

Tuesday, April 21, 2020

A microbial factory for defensive kahalalides in a tripartite marine symbiosis.

Chemical defense against predators is widespread in natural ecosystems. Occasionally, taxonomically distant organisms share the same defense chemical. Here, we describe an unusual tripartite marine symbiosis, in which an intracellular bacterial symbiont (“Candidatus Endobryopsis kahalalidefaciens”) uses a diverse array of biosynthetic enzymes to convert simple substrates into a library of complex molecules (the kahalalides) for chemical defense of the host, the alga Bryopsis sp., against predation. The kahalalides are subsequently hijacked by a third partner, the herbivorous mollusk Elysia rufescens, and employed similarly for defense. “Ca E. kahalalidefaciens” has lost many essential traits for free living and acts as a…

Read More »

Tuesday, April 21, 2020

Complete Genome Sequence of Enterococcus faecalis Strain SGAir0397, Isolated from a Tropical Air Sample Collected in Singapore.

Enterococcus faecalis strain SGAir0397 was isolated from a tropical air sample collected in Singapore. Its genome was assembled using single-molecule real-time sequencing data and comprises one circular chromosome with a length of 2.69 Mbp. The genome contains 2,595 protein-coding genes, 59 tRNAs, and 12 rRNAs.Copyright © 2019 Purbojati et al.

Read More »

Tuesday, April 21, 2020

Genome Sequences and Methylation Patterns of Natrinema versiforme BOL5-4 and Natrinema pallidum BOL6-1, Two Extremely Halophilic Archaea from a Bolivian Salt Mine.

Two extremely halophilic archaea, namely, Natrinema versiforme BOL5-4 and Natrinema pallidum BOL6-1, were isolated from a Bolivian salt mine and their genomes sequenced using single-molecule real-time sequencing. The GC-rich genomes of BOL5-4 and BOL6-1 were 4.6 and 3.8 Mbp, respectively, with large chromosomes and multiple megaplasmids. Genome annotation was incorporated into HaloWeb and methylation patterns incorporated into REBASE.Copyright © 2019 DasSarma et al.

Read More »

Tuesday, April 21, 2020

Complete Genome Sequence of Desulfovibrio desulfuricans IC1, a Sulfonate-Respiring Anaerobe.

We report the complete genome sequence of the anaerobic, sulfonate-respiring, sulfate-reducing bacterium Desulfovibrio desulfuricans IC1. The genome was assembled into a single 3.25-Mb circular chromosome with 2,680 protein-coding genes identified. Sequencing of sulfonate-metabolizing anaerobes is key for understanding sulfonate degradation and its role in the sulfur cycle.Copyright © 2019 Day et al.

Read More »

Tuesday, April 21, 2020

Complete Genome Sequence of Leptospira kmetyi LS 001/16, Isolated from a Soil Sample Associated with a Leptospirosis Patient in Kelantan, Malaysia.

The Gram-negative pathogenic spirochetal bacteria Leptospira spp. cause leptospirosis in humans and livestock animals. Leptospira kmetyi strain LS 001/16 was isolated from a soil sample associated with a leptospirosis patient in Kelantan, which is among the states in Malaysia with a high reported number of disease cases. Here, we report the complete genome sequence of Leptospira kmetyi strain LS 001/16. Copyright © 2019 Yusof et al.

Read More »

Tuesday, April 21, 2020

Methylomes of Two Extremely Halophilic Archaea Species, Haloarcula marismortui and Haloferax mediterranei.

The genomes of two extremely halophilic Archaea species, Haloarcula marismortui and Haloferax mediterranei, were sequenced using single-molecule real-time sequencing. The ~4-Mbp genomes are GC rich with multiple large plasmids and two 4-methyl-cytosine patterns. Methyl transferases were incorporated into the Restriction Enzymes Database (REBASE), and gene annotation was incorporated into the Haloarchaeal Genomes Database (HaloWeb).Copyright © 2019 DasSarma et al.

Read More »

Tuesday, April 21, 2020

Complete Genome Sequence of Leuconostoc kimchii Strain NKJ218, Isolated from Homemade Kimchi.

Leuconostoc kimchii strain NKJ218 was isolated from homemade kimchi in South Korea. The whole genome was sequenced using the PacBio RS II and Illumina NovoSeq 6000 platforms. Here, we report a genome sequence of strain NKJ218, which consists of a 1.9-Mbp chromosome and three plasmid contigs. A total of 2,005 coding sequences (CDS) were predicted, including 1,881 protein-coding sequences.Copyright © 2019 Jung et al.

Read More »

Tuesday, April 21, 2020

Draft Genome Sequence of Mesosutterella multiformis JCM 32464T, a Member of the Family Sutterellaceae, Isolated from Human Feces.

Here, we report the draft genome sequence of Mesosutterella multiformis JCM 32464T, a new member of the family Sutterellaceae that was isolated from human feces. The genome assembly comprised 2,621,983?bp, with a G+C content of 56.9%. This genomic analysis will be useful for understanding the metabolic activities of this asaccharolytic bacterium.Copyright © 2019 Ikeyama et al.

Read More »

Tuesday, April 21, 2020

Draft Genome Sequences of Type VI Secretion System-Encoding Vibrio fischeri Strains FQ-A001 and ES401.

The type VI secretion system (T6SS) facilitates lethal competition between bacteria through direct contact. Comparative genomics has facilitated the study of these systems in Vibrio fischeri, which colonizes the squid host Euprymna scolopes Here, we report the draft genome sequences of two lethal V. fischeri strains that encode the T6SS, FQ-A001 and ES401.Copyright © 2019 Bultman et al.

Read More »

1 2 3 14

Subscribe for blog updates:

Archives