X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, October 25, 2020

AGBT Virtual Poster: Long-read assembly of the Aedes aegypti Aag2 cell line genome resolves ancient endogenous viral elements

In this AGBT poster, PacBio bioinformatician Matthew Seetin presents a new assembly for Aedes aegypti cell line, the mosquito responsible for spreading viruses like Dengue and Zika. SMRT Sequencing generated a gapless assembly with a contig N50 of 1.4 Mb, compared to 82 kb in the previous assembly. The genome features a number of transposable elements and long tandem repeats.

Read More »

Tuesday, April 21, 2020

Rapid and Focused Maturation of a VRC01-Class HIV Broadly Neutralizing Antibody Lineage Involves Both Binding and Accommodation of the N276-Glycan.

The VH1-2 restricted VRC01-class of antibodies targeting the HIV envelope CD4 binding site are a major focus of HIV vaccine strategies. However, a detailed analysis of VRC01-class antibody development has been limited by the rare nature of these responses during natural infection and the lack of longitudinal sampling of such responses. To inform vaccine strategies, we mapped the development of a VRC01-class antibody lineage (PCIN63) in the subtype C infected IAVI Protocol C neutralizer PC063. PCIN63 monoclonal antibodies had the hallmark VRC01-class features and demonstrated neutralization breadth similar to the prototype VRC01 antibody, but were 2- to 3-fold less mutated.…

Read More »

Tuesday, April 21, 2020

Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards.

Monitor lizards are unique among ectothermic reptiles in that they have high aerobic capacity and distinctive cardiovascular physiology resembling that of endothermic mammals. Here, we sequence the genome of the Komodo dragon Varanus komodoensis, the largest extant monitor lizard, and generate a high-resolution de novo chromosome-assigned genome assembly for V. komodoensis using a hybrid approach of long-range sequencing and single-molecule optical mapping. Comparing the genome of V. komodoensis with those of related species, we find evidence of positive selection in pathways related to energy metabolism, cardiovascular homoeostasis, and haemostasis. We also show species-specific expansions of a chemoreceptor gene family related…

Read More »

Tuesday, April 21, 2020

Single-molecule sequencing detection of N6-methyladenine in microbial reference materials.

The DNA base modification N6-methyladenine (m6A) is involved in many pathways related to the survival of bacteria and their interactions with hosts. Nanopore sequencing offers a new, portable method to detect base modifications. Here, we show that a neural network can improve m6A detection at trained sequence contexts compared to previously published methods using deviations between measured and expected current values as each adenine travels through a pore. The model, implemented as the mCaller software package, can be extended to detect known or confirm suspected methyltransferase target motifs based on predictions of methylation at untrained contexts. We use PacBio, Oxford…

Read More »

Wednesday, February 26, 2020

Single cell isoform sequencing (scIso-Seq) identifies novel full-length mRNAs and cell type-specific expression

Single cell RNA-seq (scRNA-seq) is an emerging field for characterizing cell heterogeneity in complex tissues. However, most scRNA-seq methodologies are limited to gene count information due to short read lengths. Here, we combine the microfluidics scRNA-seq technique, Drop-Seq, with PacBio Single Molecule, Real-Time (SMRT) Sequencing to generate full-length transcript isoforms that can be confidently assigned to individual cells. We generated single cell Iso-Seq (scIso-Seq) libraries for chimp and human cerebral organoid samples on the Dolomite Nadia platform and sequenced each library with two SMRT Cells 8M on the PacBio Sequel II System. We developed a bioinformatics pipeline to identify, classify,…

Read More »

Wednesday, February 26, 2020

Single Molecule Real Time (SMRT) sequencing sensitively detects polyclonal and compound BCR-ABL in patients who relapse on kinase inhibitor therapy.

Secondary kinase domain (KD) mutations are the most well-recognized mechanism of resistance to tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) and other cancers. In some cases, multiple drug resistant KD mutations can coexist in an individual patient (“polyclonality”). Alternatively, more than one mutation can occur in tandem on a single allele (“compound mutations”) following response and relapse to sequentially administered TKI therapy. Distinguishing between these two scenarios can inform the clinical choice of subsequent TKI treatment. There is currently no clinically adaptable methodology that offers the ability to distinguish polyclonal from compound mutations. Due to the size of…

Read More »

Wednesday, February 26, 2020

Long-read assembly of the Aedes aegypti Aag2 cell line genome resolves ancient endogenous viral elements

Transmission of arboviruses such as Dengue Virus by Aedes aegypti causes debilitating disease across the globe. Disease in humans can include severe acute symptoms such as hemorrhagic fever and organ failure, but mosquitoes tolerate high titers of virus in a persistent infection. The mechanisms responsible for this viral tolerance are unclear. Recent publications highlighted the integration of genetic material from non-retroviral RNA viruses into the genome of the host during infection that relies upon endogenous retro-transcriptase activity from transposons. These endogenous viral elements (EVEs) found in the genome are predicted to be ancient, and at least some EVEs are under…

Read More »

Wednesday, February 26, 2020

Long-read assembly of the Aedes aegypti Aag2 cell line genome resolves ancient endogenous viral elements

Transmission of arboviruses such as Dengue and Zika viruses by Aedes aegypti causes widespread and debilitating disease across the globe. Disease in humans can include severe acute symptoms such as hemorrhagic fever, organ failure, and encephalitis; and yet, mosquitoes tolerate high titers of virus in a persistent infection. The mechanisms responsible for tolerance to viral infection in mosquitoes are still unclear. Recent publications have highlighted the integration of genetic material from non-retroviral RNA viruses into the genome of the host during infection that relies upon endogenous retro-transcriptase activity from transposons. These endogenous viral elements (EVEs) found in the genome are…

Read More »

Subscribe for blog updates:

Archives