April 21, 2020  |  

The Ptr1 locus of Solanum lycopersicoides confers resistance to race 1 strains of Pseudomonas syringae pv. tomato and to Ralstonia pseudosolanacearum by recognizing the type III effectors AvrRpt2/RipBN.

Race 1 strains of Pseudomonas syringae pv. tomato, which cause bacterial speck disease of tomato, are becoming increasingly common and no simply-inherited genetic resistance to such strains is known. We discovered that a locus in Solanum lycopersicoides, termed Pseudomonas tomato race 1 (Ptr1), confers resistance to race 1 Pst strains by detecting the activity of type III effector AvrRpt2. In Arabidopsis, AvrRpt2 degrades the RIN4 protein thereby activating RPS2-mediated immunity. Using site-directed mutagenesis of AvrRpt2 we found that, like RPS2, activation of Ptr1 requires AvrRpt2 proteolytic activity. Ptr1 also detected the activity of AvrRpt2 homologs from diverse bacteria including one in Ralstonia pseudosolanacearum. The genome sequence of S. lycopersicoides revealed no RPS2 homolog in the Ptr1 region. Ptr1 could play an important role in controlling bacterial speck disease and its future cloning may shed light on an example of convergent evolution for recognition of a widespread type III effector.


April 21, 2020  |  

The Complete Genome of the Atypical Enteropathogenic Escherichia coli Archetype Isolate E110019 Highlights a Role for Plasmids in Dissemination of the Type III Secreted Effector EspT.

Enteropathogenic Escherichia coli (EPEC) is a leading cause of moderate to severe diarrhea among young children in developing countries, and EPEC isolates can be subdivided into two groups. Typical EPEC (tEPEC) bacteria are characterized by the presence of both the locus of enterocyte effacement (LEE) and the plasmid-encoded bundle-forming pilus (BFP), which are involved in adherence and translocation of type III effectors into the host cells. Atypical EPEC (aEPEC) bacteria also contain the LEE but lack the BFP. In the current report, we describe the complete genome of outbreak-associated aEPEC isolate E110019, which carries four plasmids. Comparative genomic analysis demonstrated that the type III secreted effector EspT gene, an autotransporter gene, a hemolysin gene, and putative fimbrial genes are all carried on plasmids. Further investigation of 65 espT-containing E. coli genomes demonstrated that different espT alleles are associated with multiple plasmids that differ in their overall gene content from the E110019 espT-containing plasmid. EspT has been previously described with respect to its role in the ability of E110019 to invade host cells. While other type III secreted effectors of E. coli have been identified on insertion elements and prophages of the chromosome, we demonstrated in the current study that the espT gene is located on multiple unique plasmids. These findings highlight a role of plasmids in dissemination of a unique E. coli type III secreted effector that is involved in host invasion and severe diarrheal illness.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Bioinformatic analysis of the complete genome sequence of Pectobacterium carotovorum subsp. brasiliense BZA12 and candidate effector screening

AbstractPectobacterium carotovorum subsp. brasiliense (Pcb) is a gram-negative, plant pathogenic bacterium of the soft rot Enterobacteriaceae (SRE) family. We present the complete genome sequence of Pcb strain BZA12, which reveals that Pcb strain BZA12 carries a single 4,924,809 bp chromosome with 51.97% GC content and comprises 4508 predicted protein-coding genes.Geneannotationofthese genes utilizedGO, KEGG,and COG databases.Incomparison withthree closely related soft-rot pathogens, strain BZA12 has 3797 gene families, among which 3107 gene families are identified as orthologous with those of both P. carotovorum subsp. carotovorum PCC21 and P. carotovorum subsp. odoriferum BCS7, as well as 36 putative Unique Gene Families. We selected five putative effectors from the BZA12 genome and transiently expressed them in Nicotiana benthamiana. Candidate effector A12GL002483 was localized in the cell nucleus and induced cell death. This study provides a foundation for a better understanding of the genomic structure and function of Pcb, particularly in the discovery of potential pathogenic factors and for the development of more effective strategies against this pathogen.


April 21, 2020  |  

Development of CRISPR-Cas systems for genome editing and beyond

The development of clustered regularly interspaced short-palindromic repeat (CRISPR)-Cas systems for genome editing has transformed the way life science research is conducted and holds enormous potential for the treatment of disease as well as for many aspects of biotech- nology. Here, I provide a personal perspective on the development of CRISPR-Cas9 for genome editing within the broader context of the field and discuss our work to discover novel Cas effectors and develop them into additional molecular tools. The initial demonstra- tion of Cas9-mediated genome editing launched the development of many other technologies, enabled new lines of biological inquiry, and motivated a deeper examination of natural CRISPR-Cas systems, including the discovery of new types of CRISPR-Cas systems. These new discoveries in turn spurred further technological developments. I review these exciting discoveries and technologies as well as provide an overview of the broad array of applications of these technologies in basic research and in the improvement of human health. It is clear that we are only just beginning to unravel the potential within microbial diversity, and it is quite likely that we will continue to discover other exciting phenomena, some of which it may be possible to repurpose as molecular technologies. The transformation of mysterious natural phenomena to powerful tools, however, takes a collective effort to discover, characterize, and engineer them, and it has been a privilege to join the numerous researchers who have contributed to this transformation of CRISPR-Cas systems.


April 21, 2020  |  

Programmable mutually exclusive alternative splicing for generating RNA and protein diversity.

Alternative splicing performs a central role in expanding genomic coding capacity and proteomic diversity. However, programming of splicing patterns in engineered biological systems remains underused. Synthetic approaches thus far have predominantly focused on controlling expression of a single protein through alternative splicing. Here, we describe a modular and extensible platform for regulating four programmable exons that undergo a mutually exclusive alternative splicing event to generate multiple functionally-distinct proteins. We present an intron framework that enforces the mutual exclusivity of two internal exons and demonstrate a graded series of consensus sequence elements of varying strengths that set the ratio of two mutually exclusive isoforms. We apply this framework to program the DNA-binding domains of modular transcription factors to differentially control downstream gene activation. This splicing platform advances an approach for generating diverse isoforms and can ultimately be applied to program modular proteins and increase coding capacity of synthetic biological systems.


April 21, 2020  |  

Complete Genome Sequence of Sequevar 14M Ralstonia solanacearum Strain HA4-1 Reveals Novel Type III Effectors Acquired Through Horizontal Gene Transfer.

Ralstonia solanacearum, which causes bacterial wilt in a broad range of plants, is considered a “species complex” due to its significant genetic diversity. Recently, we have isolated a new R. solanacearum strain HA4-1 from Hong’an county in Hubei province of China and identified it being phylotype I, sequevar 14M (phylotype I-14M). Interestingly, we found that it can cause various disease symptoms among different potato genotypes and display different pathogenic behavior compared to a phylogenetically related strain, GMI1000. To dissect the pathogenic mechanisms of HA4-1, we sequenced its whole genome by combined sequencing technologies including Illumina HiSeq2000, PacBio RS II, and BAC-end sequencing. Genome assembly results revealed the presence of a conventional chromosome, a megaplasmid as well as a 143 kb plasmid in HA4-1. Comparative genome analysis between HA4-1 and GMI1000 shows high conservation of the general virulence factors such as secretion systems, motility, exopolysaccharides (EPS), and key regulatory factors, but significant variation in the repertoire and structure of type III effectors, which could be the determinants of their differential pathogenesis in certain potato species or genotypes. We have identified two novel type III effectors that were probably acquired through horizontal gene transfer (HGT). These novel R. solanacearum effectors display homology to several YopJ and XopAC family members. We named them as RipBR and RipBS. Notably, the copy of RipBR on the plasmid is a pseudogene, while the other on the megaplasmid is normal. For RipBS, there are three copies located in the megaplasmid and plasmid, respectively. Our results have not only enriched the genome information on R. solanacearum species complex by sequencing the first sequevar 14M strain and the largest plasmid reported in R. solanacearum to date but also revealed the variation in the repertoire of type III effectors. This will greatly contribute to the future studies on the pathogenic evolution, host adaptation, and interaction between R. solanacearum and potato.


April 21, 2020  |  

A Pathovar of Xanthomonas oryzae Infecting Wild Grasses Provides Insight Into the Evolution of Pathogenicity in Rice Agroecosystems

Xanthomonas oryzae (Xo) are critical rice pathogens. Virulent lineages from Africa and Asia and less virulent strains from the US have been well characterized. X. campestris pv. leersiae (Xcl), first described in 1957, causes bacterial streak on the perennial grass, Leersia hexandra, and is a close relative of Xo. L. hexandra, a member of the Poaceae, is highly similar to rice phylogenetically, is globally ubiquitous around rice paddies, and is a reservoir of pathogenic Xo. We used long read, single molecule, real time (SMRT) genome sequences of five strains of Xcl from Burkina Faso, China, Mali and Uganda to determine the genetic relatedness of this organism with Xo. Novel Transcription Activator-Like Effectors (TALEs) were discovered in all five strains of Xcl. Predicted TALE target sequences were identified in the L. perrieri genome and compared to rice susceptibility gene homologs. Pathogenicity screening on L. hexandra and diverse rice cultivars confirmed that Xcl are able to colonize rice and produce weak but not progressive symptoms. Overall, based on average nucleotide identity, type III effector repertoires and disease phenotype, we propose to rename Xcl to X. oryzae pv. leersiae (Xol) and use this parallel system to improve understanding of the evolution of bacterial pathogenicity in rice agroecosystems.


April 21, 2020  |  

Prediction of Host-Specific Genes by Pan-Genome Analyses of the Korean Ralstonia solanacearum Species Complex.

The soil-borne pathogenic Ralstonia solanacearum species complex (RSSC) is a group of plant pathogens that is economically destructive worldwide and has a broad host range, including various solanaceae plants, banana, ginger, sesame, and clove. Previously, Korean RSSC strains isolated from samples of potato bacterial wilt were grouped into four pathotypes based on virulence tests against potato, tomato, eggplant, and pepper. In this study, we sequenced the genomes of 25 Korean RSSC strains selected based on these pathotypes. The newly sequenced genomes were analyzed to determine the phylogenetic relationships between the strains with average nucleotide identity values, and structurally compared via multiple genome alignment using Mauve software. To identify candidate genes responsible for the host specificity of the pathotypes, functional genome comparisons were conducted by analyzing pan-genome orthologous group (POG) and type III secretion system effectors (T3es). POG analyses revealed that a total of 128 genes were shared only in tomato-non-pathogenic strains, 8 genes in tomato-pathogenic strains, 5 genes in eggplant-non-pathogenic strains, 7 genes in eggplant-pathogenic strains, 1 gene in pepper-non-pathogenic strains, and 34 genes in pepper-pathogenic strains. When we analyzed T3es, three host-specific effectors were predicted: RipS3 (SKWP3) and RipH3 (HLK3) were found only in tomato-pathogenic strains, and RipAC (PopC) were found only in eggplant-pathogenic strains. Overall, we identified host-specific genes and effectors that may be responsible for virulence functions in RSSC in silico. The expected characters of those genes suggest that the host range of RSSC is determined by the comprehensive actions of various virulence factors, including effectors, secretion systems, and metabolic enzymes.


April 21, 2020  |  

Comparative genomics and pathogenicity potential of members of the Pseudomonas syringae species complex on Prunus spp.

Diseases on Prunus spp. have been associated with a large number of phylogenetically different pathovars and species within the P. syringae species complex. Despite their economic significance, there is a severe lack of genomic information of these pathogens. The high phylogenetic diversity observed within strains causing disease on Prunus spp. in nature, raised the question whether other strains or species within the P. syringae species complex were potentially pathogenic on Prunus spp.To gain insight into the genomic potential of adaptation and virulence in Prunus spp., a total of twelve de novo whole genome sequences of P. syringae pathovars and species found in association with diseases on cherry (sweet, sour and ornamental-cherry) and peach were sequenced. Strains sequenced in this study covered three phylogroups and four clades. These strains were screened in vitro for pathogenicity on Prunus spp. together with additional genome sequenced strains thus covering nine out of thirteen of the currently defined P. syringae phylogroups. Pathogenicity tests revealed that most of the strains caused symptoms in vitro and no obvious link was found between presence of known virulence factors and the observed pathogenicity pattern based on comparative genomics. Non-pathogenic strains were displaying a two to three times higher generation time when grown in rich medium.In this study, the first set of complete genomes of cherry associated P. syringae strains as well as the draft genome of the quarantine peach pathogen P. syringae pv. persicae were generated. The obtained genomic data were matched with phenotypic data in order to determine factors related to pathogenicity to Prunus spp. Results of this study suggest that the inability to cause disease on Prunus spp. in vitro is not the result of host specialization but rather linked to metabolic impairments of individual strains.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.