fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Distinct genomic features characterize two clades of Corynebacterium diphtheriae: Proposal of Corynebacterium diphtheriae subsp. diphtheriae subsp. nov. and Corynebacterium diphtheriae subsp. lausannense subsp. nov.

Corynebacterium diphtheriae is the etiological agent of diphtheria, a disease caused by the presence of the diphtheria toxin. However, an increasing number of records report non-toxigenic C. diphtheriae infections. Here, a C. diphtheriae strain was recovered from a patient with a past history of bronchiectasis who developed a severe tracheo-bronchitis with multiple whitish lesions of the distal trachea and the mainstem bronchi. Whole-genome sequencing (WGS), performed in parallel with PCR targeting the toxin gene and the Elek test, provided clinically relevant results in a short turnaround time, showing that the isolate was non-toxigenic. A comparative genomic analysis of the new…

Read More »

Sunday, September 22, 2019

Natural selection in bats with historical exposure to white-nose syndrome

Hibernation allows animals to survive periods of resource scarcity by reducing their energy expenditure through decreased metabolism. However, hibernators become susceptible to psychrophilic pathogens if they cannot mount an efficient immune response to infection. While Nearctic bats infected with white-nose syndrome (WNS) suffer high mortality, related Palearctic taxa are better able to survive the disease than their Nearctic counterparts. We hypothesised that WNS exerted historical selective pressure in Palearctic bats, resulting in genomic changes that promote infection tolerance.

Read More »

Sunday, September 22, 2019

Generic accelerated sequence alignment in SeqAn using vectorization and multi-threading.

Pairwise sequence alignment is undoubtedly a central tool in many bioinformatics analyses. In this paper, we present a generically accelerated module for pairwise sequence alignments applicable for a broad range of applications. In our module, we unified the standard dynamic programming kernel used for pairwise sequence alignments and extended it with a generalized inter-sequence vectorization layout, such that many alignments can be computed simultaneously by exploiting SIMD (single instruction multiple data) instructions of modern processors. We then extended the module by adding two layers of thread-level parallelization, where we (a) distribute many independent alignments on multiple threads and (b) inherently…

Read More »

Sunday, September 22, 2019

Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen.

The rapid emergence of antibiotic-resistant pathogenic bacteria has accelerated the search for new antibiotics. Many clinically used antibacterials were discovered through culturing a single microbial species under nutrient-rich conditions, but in the environment, bacteria constantly encounter poor nutrient conditions and interact with neighboring microbial species. In an effort to recapitulate this environment, we generated a nine-strain actinomycete community and used 16S rDNA sequencing to deconvolute the stochastic production of antimicrobial activity that was not observed from any of the axenic cultures. We subsequently simplified the community to just two strains and identified Amycolatopsis sp. AA4 as the producing strain and…

Read More »

Sunday, September 22, 2019

Phenazines in plant-beneficial Pseudomonas spp.: biosynthesis, regulation, function and genomics.

Plant-beneficial phenazine-producing Pseudomonas spp. are proficient biocontrol agents of soil-dwelling plant pathogens. Phenazines are redox-active molecules that display broad-spectrum antibiotic activity toward many fungal, bacterial and oomycete plant pathogens. Phenazine compounds also play a role in the persistence and survival of Pseudomonas spp. in the rhizosphere. This mini-review focuses on plant-beneficial phenazine-producing Pseudomonas spp. from the P. fluorescens species complex, which includes numerous well-known phenazine-producing strains of biocontrol interest. In this review the current knowledge on phenazine biosynthesis and regulation, the role played by phenazines in biocontrol and rhizosphere colonization, as well as exciting new advances in the genomics of…

Read More »

Sunday, September 22, 2019

Characterization of Streptococcus pluranimalium from a cattle with mastitis by whole genome sequencing and functional validation.

Streptococcus pluranimalium is a new member of the Streptococcus genus isolated from multiple different animal hosts. It has been identified as a pathogen associated with subclinical mastitis, valvular endocarditis and septicaemia in animals. Moreover, this bacterium has emerged as a new pathogen for human infective endocarditis and brain abscess. However, the patho-biological properties of S. pluranimalium remain virtually unknown. The aim of this study was to determine the complete genome sequence of S. pluranimalium strain TH11417 isolated from a cattle with mastitis, and to characterize its antimicrobial resistance, virulence, and carbon catabolism.The genome of S. pluranimalium TH11417, determined by single-molecule…

Read More »

Sunday, September 22, 2019

Genomic analysis of consecutive Acinetobacter baumannii strains from a single patient.

Acinetobacter baumannii is one of the most important nosocomial pathogens, and thus it is required to investigate how it disseminate in hospitals and infect patients. We performed whole genome sequencing for 24 A. baumannii strains isolated successively from the blood of a single patient to evaluate whether repeated infections were due to re-infection or relapse infection and to investigate within-host evolution. The whole genome of the first strain, BL1, was sequenced de novo using the PacBio RSII system. BL2-BL24, were sequenced with an Illumina Hiseq4000 and mapped to the genome sequences of BL1. We identified 42 single-nucleotide variations among the…

Read More »

Sunday, September 22, 2019

N6-methyladenine DNA modification in Xanthomonas oryzae pv. oryzicola genome.

DNA N6-methyladenine (6mA) modifications expand the information capacity of DNA and have long been known to exist in bacterial genomes. Xanthomonas oryzae pv. Oryzicola (Xoc) is the causative agent of bacterial leaf streak, an emerging and destructive disease in rice worldwide. However, the genome-wide distribution patterns and potential functions of 6mA in Xoc are largely unknown. In this study, we analyzed the levels and global distribution patterns of 6mA modification in genomic DNA of seven Xoc strains (BLS256, BLS279, CFBP2286, CFBP7331, CFBP7341, L8 and RS105). The 6mA modification was found to be widely distributed across the seven Xoc genomes, accounting…

Read More »

Sunday, September 22, 2019

Enterobacter cloacae Complex Sequence Type 171 Isolates Expressing KPC-4 Carbapenemase Recovered from Canine Patients in Ohio.

Companion animals are likely relevant in the transmission of antimicrobial-resistant bacteria. Enterobacter xiangfangensis sequence type 171 (ST171), a clone that has been implicated in clusters of infections in humans, was isolated from two dogs with clinical disease in Ohio. The canine isolates contained IncHI2 plasmids encoding blaKPC-4 Whole-genome sequencing was used to put the canine isolates in phylogenetic context with available human ST171 sequences, as well as to characterize their blaKPC-4 plasmids. Copyright © 2018 American Society for Microbiology.

Read More »

Sunday, September 22, 2019

Discovery of the actinoplanic acid pathway in Streptomyces rapamycinicus reveals a genetically conserved synergism with rapamycin.

Actinobacteria possess a great wealth of pathways for production of bioactive compounds. Following advances in genome mining, dozens of natural product (NP) gene clusters are routinely found in each actinobacterial genome; however, the modus operandi of this large arsenal is poorly understood. During investigations of the secondary metabolome of Streptomyces rapamycinicus, the producer of rapamycin, we observed accumulation of two compounds never before reported from this organism. Structural elucidation revealed actinoplanic acid A and its demethyl analogue. Actinoplanic acids (APLs) are potent inhibitors of Ras farnesyltransferase and therefore represent bioactive compounds of medicinal interest. Supported with the unique structure of…

Read More »

Sunday, September 22, 2019

Investigation of a cluster of Sphingomonas koreensis infections.

Plumbing systems are an infrequent but known reservoir for opportunistic microbial pathogens that can infect hospitalized patients. In 2016, a cluster of clinical sphingomonas infections prompted an investigation.We performed whole-genome DNA sequencing on clinical isolates of multidrug-resistant Sphingomonas koreensis identified from 2006 through 2016 at the National Institutes of Health (NIH) Clinical Center. We cultured S. koreensis from the sinks in patient rooms and performed both whole-genome and shotgun metagenomic sequencing to identify a reservoir within the infrastructure of the hospital. These isolates were compared with clinical and environmental S. koreensis isolates obtained from other institutions.The investigation showed that two…

Read More »

1 6 7 8

Subscribe for blog updates:

Archives