June 1, 2021  |  

Resolving the ‘dark matter’ in genomes.

Second-generation sequencing has brought about tremendous insights into the genetic underpinnings of biology. However, there are many functionally important and medically relevant regions of genomes that are currently difficult or impossible to sequence, resulting in incomplete and fragmented views of genomes. Two main causes are (i) limitations to read DNA of extreme sequence content (GC-rich or AT-rich regions, low complexity sequence contexts) and (ii) insufficient read lengths which leave various forms of structural variation unresolved and result in mapping ambiguities.

April 21, 2020  |  

Profiling the genome-wide landscape of tandem repeat expansions.

Tandem repeat (TR) expansions have been implicated in dozens of genetic diseases, including Huntington’s Disease, Fragile X Syndrome, and hereditary ataxias. Furthermore, TRs have recently been implicated in a range of complex traits, including gene expression and cancer risk. While the human genome harbors hundreds of thousands of TRs, analysis of TR expansions has been mainly limited to known pathogenic loci. A major challenge is that expanded repeats are beyond the read length of most next-generation sequencing (NGS) datasets and are not profiled by existing genome-wide tools. We present GangSTR, a novel algorithm for genome-wide genotyping of both short and expanded TRs. GangSTR extracts information from paired-end reads into a unified model to estimate maximum likelihood TR lengths. We validate GangSTR on real and simulated data and show that GangSTR outperforms alternative methods in both accuracy and speed. We apply GangSTR to a deeply sequenced trio to profile the landscape of TR expansions in a healthy family and validate novel expansions using orthogonal technologies. Our analysis reveals that healthy individuals harbor dozens of long TR alleles not captured by current genome-wide methods. GangSTR will likely enable discovery of novel disease-associated variants not currently accessible from NGS. © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.

April 21, 2020  |  

Amplification-free long-read sequencing of TCF4 expanded trinucleotide repeats in Fuchs Endothelial Corneal Dystrophy.

Amplification of a CAG trinucleotide motif (CTG18.1) within the TCF4 gene has been strongly associated with Fuchs Endothelial Corneal Dystrophy (FECD). Nevertheless, a small minority of clinically unaffected elderly patients who have expanded CTG18.1 sequences have been identified. To test the hypothesis that the CAG expansions in these patients are protected from FECD because they have interruptions within the CAG repeats, we utilized a combination of an amplification-free, long-read sequencing method and a new target-enrichment sequence analysis tool developed by Pacific Biosciences to interrogate the sequence structure of expanded repeats. The sequencing was successful in identifying a previously described interruption within an unexpanded allele and provided sequence data on expanded alleles greater than 2000 bases in length. The data revealed considerable heterogeneity in the size distribution of expanded repeats within each patient. Detailed analysis of the long sequence reads did not reveal any instances of interruptions to the expanded CAG repeats, but did reveal novel variants within the AGG repeats that flank the CAG repeats in two of the five samples from clinically unaffected patients with expansions. This first examination of the sequence structure of CAG repeats in CTG18.1 suggests that factors other than interruptions to the repeat structure account for the absence of disease in some elderly patients with repeat expansions in the TCF4 gene.

April 21, 2020  |  

Genetic Variation, Comparative Genomics, and the Diagnosis of Disease.

The discovery of mutations associated with human genetic dis- ease is an exercise in comparative genomics (see Glossary). Although there are many different strategies and approaches, the central premise is that affected persons harbor a significant excess of pathogenic DNA variants as com- pared with a group of unaffected persons (controls) that is either clinically defined1 or established by surveying large swaths of the general population.2 The more exclu- sive the variant is to the disease, the greater its penetrance, the larger its effect size, and the more relevant it becomes to both disease diagnosis and future therapeutic investigation. The most popular approach used by researchers in human genetics is the case–control design, but there are others that can be used to track variants and disease in a family context or that consider the probability of different classes of mutations based on evolutionary patterns of divergence or de novo mutational change.3,4 Although the approaches may be straightforward, the discovery of patho- genic variation and its mechanism of action often is less trivial, and decades of research can be required in order to identify the variants underlying both mendelian and complex genetic traits.

April 21, 2020  |  

Long-read sequencing identified intronic repeat expansions in SAMD12 from Chinese pedigrees affected with familial cortical myoclonic tremor with epilepsy.

The locus for familial cortical myoclonic tremor with epilepsy (FCMTE) has long been mapped to 8q24 in linkage studies, but the causative mutations remain unclear. Recently, expansions of intronic TTTCA and TTTTA repeat motifs within SAMD12 were found to be involved in the pathogenesis of FCMTE in Japanese pedigrees. We aim to identify the causative mutations of FCMTE in Chinese pedigrees.We performed genetic linkage analysis by microsatellite markers in a five-generation Chinese pedigree with 55 members. We also used array-comparative genomic hybridisation (CGH) and next-generation sequencing (NGS) technologies (whole-exome sequencing, capture region deep sequencing and whole-genome sequencing) to identify the causative mutations in the disease locus. Recently, we used low-coverage (~10×) long-read genome sequencing (LRS) on the PacBio Sequel and Oxford Nanopore platforms to identify the causative mutations, and used repeat-primed PCR for validation of the repeat expansions.Linkage analysis mapped the disease locus to 8q23.3-24.23. Array-CGH and NGS failed to identify causative mutations in this locus. LRS identified the intronic TTTCA and TTTTA repeat expansions in SAMD12 as the causative mutations, thus corroborating the recently published results in Japanese pedigrees.We identified the pentanucleotide repeat expansion in SAMD12 as the causative mutation in Chinese FCMTE pedigrees. Our study also suggested that LRS is an effective tool for molecular diagnosis of genetic disorders, especially for neurological diseases that cannot be positively diagnosed by conventional clinical microarray and NGS technologies. © Author(s) (or their employer(s)) 2019. No commercial re-use. See rights and permissions. Published by BMJ.

April 21, 2020  |  

Long-Read Sequencing Emerging in Medical Genetics

The wide implementation of next-generation sequencing (NGS) technologies has revolutionized the field of medical genetics. However, the short read lengths of currently used sequencing approaches pose a limitation for identification of structural variants, sequencing repetitive regions, phasing alleles and distinguishing highly homologous genomic regions. These limitations may significantly contribute to the diagnostic gap in patients with genetic disorders who have undergone standard NGS, like whole exome or even genome sequencing. Now, the emerging long-read sequencing (LRS) technologies may offer improvements in the characterization of genetic variation and regions that are difficult to assess with the currently prevailing NGS approaches. LRS has so far mainly been used to investigate genetic disorders with previously known or strongly suspected disease loci. While these targeted approaches already show the potential of LRS, it remains to be seen whether LRS technologies can soon enable true whole genome sequencing routinely. Ultimately, this could allow the de novo assembly of individual whole genomes used as a generic test for genetic disorders. In this article, we summarize the current LRS-based research on human genetic disorders and discuss the potential of these technologies to facilitate the next major advancements in medical genetics.

April 21, 2020  |  

Tandem-genotypes: robust detection of tandem repeat expansions from long DNA reads.

Tandemly repeated DNA is highly mutable and causes at least 31 diseases, but it is hard to detect pathogenic repeat expansions genome-wide. Here, we report robust detection of human repeat expansions from careful alignments of long but error-prone (PacBio and nanopore) reads to a reference genome. Our method is robust to systematic sequencing errors, inexact repeats with fuzzy boundaries, and low sequencing coverage. By comparing to healthy controls, we prioritize pathogenic expansions within the top 10 out of 700,000 tandem repeats in whole genome sequencing data. This may help to elucidate the many genetic diseases whose causes remain unknown.

October 23, 2019  |  

Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells.

CRISPR/Cas9 is an attractive platform to potentially correct dominant genetic diseases by gene editing with unprecedented precision. In the current proof-of-principle study, we explored the use of CRISPR/Cas9 for gene-editing in myotonic dystrophy type-1 (DM1), an autosomal-dominant muscle disorder, by excising the CTG-repeat expansion in the 3′-untranslated-region (UTR) of the human myotonic dystrophy protein kinase (DMPK) gene in DM1 patient-specific induced pluripotent stem cells (DM1-iPSC), DM1-iPSC-derived myogenic cells and DM1 patient-specific myoblasts. To eliminate the pathogenic gain-of-function mutant DMPK transcript, we designed a dual guide RNA based strategy that excises the CTG-repeat expansion with high efficiency, as confirmed by Southern blot and single molecule real-time (SMRT) sequencing. Correction efficiencies up to 90% could be attained in DM1-iPSC as confirmed at the clonal level, following ribonucleoprotein (RNP) transfection of CRISPR/Cas9 components without the need for selective enrichment. Expanded CTG repeat excision resulted in the disappearance of ribonuclear foci, a quintessential cellular phenotype of DM1, in the corrected DM1-iPSC, DM1-iPSC-derived myogenic cells and DM1 myoblasts. Consequently, the normal intracellular localization of the muscleblind-like splicing regulator 1 (MBNL1) was restored, resulting in the normalization of splicing pattern of SERCA1. This study validates the use of CRISPR/Cas9 for gene editing of repeat expansions.

September 22, 2019  |  

Differential increases of specific FMR1 mRNA isoforms in premutation carriers.

Over 40% of male and ~16% of female carriers of a premutation FMR1 allele (55-200 CGG repeats) will develop fragile X-associated tremor/ataxia syndrome, an adult onset neurodegenerative disorder, while about 20% of female carriers will develop fragile X-associated primary ovarian insufficiency. Marked elevation in FMR1 mRNA transcript levels has been observed with premutation alleles, and RNA toxicity due to increased mRNA levels is the leading molecular mechanism proposed for these disorders. However, although the FMR1 gene undergoes alternative splicing, it is unknown whether all or only some of the isoforms are overexpressed in premutation carriers and which isoforms may contribute to the premutation pathology.To address this question, we have applied a long-read sequencing approach using single-molecule real-time (SMRT) sequencing and qRT-PCR. Our SMRT sequencing analysis performed on peripheral blood mononuclear cells, fibroblasts and brain tissue samples derived from premutation carriers and controls revealed the existence of 16 isoforms of 24 predicted variants. Although the relative abundance of all mRNA isoforms was significantly increased in the premutation group, as expected based on the bulk increase in mRNA levels, there was a disproportionate (fourfold to sixfold) increase, relative to the overall increase in mRNA, in the abundance of isoforms spliced at both exons 12 and 14, specifically Iso10 and Iso10b, containing the complete exon 15 and differing only in splicing in exon 17.These findings suggest that RNA toxicity may arise from a relative increase of all FMR1 mRNA isoforms. Interestingly, the Iso10 and Iso10b mRNA isoforms, lacking the C-terminal functional sites for fragile X mental retardation protein function, are the most increased in premutation carriers relative to normal, suggesting a functional relevance in the pathology of FMR1-associated disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

September 22, 2019  |  

Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics.

Short read massive parallel sequencing has emerged as a standard diagnostic tool in the medical setting. However, short read technologies have inherent limitations such as GC bias, difficulties mapping to repetitive elements, trouble discriminating paralogous sequences, and difficulties in phasing alleles. Long read single molecule sequencers resolve these obstacles. Moreover, they offer higher consensus accuracies and can detect epigenetic modifications from native DNA. The first commercially available long read single molecule platform was the RS system based on PacBio’s single molecule real-time (SMRT) sequencing technology, which has since evolved into their RSII and Sequel systems. Here we capsulize how SMRT sequencing is revolutionizing constitutional, reproductive, cancer, microbial and viral genetic testing.© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.

September 22, 2019  |  

Next generation sequencing technology: Advances and applications.

Impressive progress has been made in the field of Next Generation Sequencing (NGS). Through advancements in the fields of molecular biology and technical engineering, parallelization of the sequencing reaction has profoundly increased the total number of produced sequence reads per run. Current sequencing platforms allow for a previously unprecedented view into complex mixtures of RNA and DNA samples. NGS is currently evolving into a molecular microscope finding its way into virtually every fields of biomedical research. In this chapter we review the technical background of the different commercially available NGS platforms with respect to template generation and the sequencing reaction and take a small step towards what the upcoming NGS technologies will bring. We close with an overview of different implementations of NGS into biomedical research. This article is part of a Special Issue entitled: From Genome to Function. Copyright © 2014 Elsevier B.V. All rights reserved.

September 22, 2019  |  

Microsatellite polymorphism in the endangered snail kite reveals a panmictic, low diversity population

Genetic structure and genetic diversity are key population characteristics that can inform conservation decisions, such as delineating management units or assessing potential risks for inbreeding depression. Evidence of genetic structuring or low genetic diversity in the critically endangered snail kite (Rostrhamus sociabilis plumbeus) would have implications for monitoring and planning decisions. Recent work on understanding connectivity across the snail kite range indicated that there is less dispersal between northern and southern parts of the current range, and that dispersal is shaped by individual habitat preference. We examine whether there is neutral genetic structure and the amount of genetic variation in the population by non-lethally sampling 235 nestlings from unique nests across the entire breeding range between 2013 and 2014. Data on 15 microsatellite revealed low diversity (e.g., Na?=?2.54, He?=?0.37) and range-wide panmixia based on AMOVA, Bayesian clustering, spatial autocorrelation, isolation by distance, and spatially explicit ordination analyses. Our results emphasize that long-term recovery goals and management strategies should be based on viewing snail kites as a single genetic population, despite evidence for non-random dispersal between wetlands over ecological time scales. These results also highlight the need to understand potential effects of low genetic diversity on population dynamics and viability of snail kites. More broadly, these results add to the growing evidence for potential discrepancies between dispersal and genetic patterns, emphasizing that care should be taken if using one to interpret the other, particularly for widely-ranging species.

September 22, 2019  |  

Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy.

Epilepsy is a common neurological disorder, and mutations in genes encoding ion channels or neurotransmitter receptors are frequent causes of monogenic forms of epilepsy. Here we show that abnormal expansions of TTTCA and TTTTA repeats in intron 4 of SAMD12 cause benign adult familial myoclonic epilepsy (BAFME). Single-molecule, real-time sequencing of BAC clones and nanopore sequencing of genomic DNA identified two repeat configurations in SAMD12. Intriguingly, in two families with a clinical diagnosis of BAFME in which no repeat expansions in SAMD12 were observed, we identified similar expansions of TTTCA and TTTTA repeats in introns of TNRC6A and RAPGEF2, indicating that expansions of the same repeat motifs are involved in the pathogenesis of BAFME regardless of the genes in which the expanded repeats are located. This discovery that expansions of noncoding repeats lead to neuronal dysfunction responsible for myoclonic tremor and epilepsy extends the understanding of diseases with such repeat expansion.

September 22, 2019  |  

Genomic architecture of haddock (Melanogrammus aeglefinus) shows expansions of innate immune genes and short tandem repeats.

Increased availability of genome assemblies for non-model organisms has resulted in invaluable biological and genomic insight into numerous vertebrates, including teleosts. Sequencing of the Atlantic cod (Gadus morhua) genome and the genomes of many of its relatives (Gadiformes) demonstrated a shared loss of the major histocompatibility complex (MHC) II genes 100 million years ago. An improved version of the Atlantic cod genome assembly shows an extreme density of tandem repeats compared to other vertebrate genome assemblies. Highly contiguous assemblies are therefore needed to further investigate the unusual immune system of the Gadiformes, and whether the high density of tandem repeats found in Atlantic cod is a shared trait in this group.Here, we have sequenced and assembled the genome of haddock (Melanogrammus aeglefinus) – a relative of Atlantic cod – using a combination of PacBio and Illumina reads. Comparative analyses reveal that the haddock genome contains an even higher density of tandem repeats outside and within protein coding sequences than Atlantic cod. Further, both species show an elevated number of tandem repeats in genes mainly involved in signal transduction compared to other teleosts. A characterization of the immune gene repertoire demonstrates a substantial expansion of MCHI in Atlantic cod compared to haddock. In contrast, the Toll-like receptors show a similar pattern of gene losses and expansions. For the NOD-like receptors (NLRs), another gene family associated with the innate immune system, we find a large expansion common to all teleosts, with possible lineage-specific expansions in zebrafish, stickleback and the codfishes.The generation of a highly contiguous genome assembly of haddock revealed that the high density of short tandem repeats as well as expanded immune gene families is not unique to Atlantic cod – but possibly a feature common to all, or most, codfishes. A shared expansion of NLR genes in teleosts suggests that the NLRs have a more substantial role in the innate immunity of teleosts than other vertebrates. Moreover, we find that high copy number genes combined with variable genome assembly qualities may impede complete characterization of these genes, i.e. the number of NLRs in different teleost species might be underestimates.

September 22, 2019  |  

Genome-wide identification of simple sequence repeats and development of polymorphic SSR markers for genetic studies in tea plant (Camellia sinensis)

The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most popular non-alcoholic beverage crops worldwide. The availability of complete genome sequences for the Camellia sinensis var. ‘Shuchazao’ has provided the opportunity to identify all types of simple sequence repeat (SSR) markers by genome-wide scan. In this study, a total of 667,980 SSRs were identified in the ~?3.08 Gb genome, with an overall density of 216.88 SSRs/Mb. Dinucleotide repeats were predominant among microsatellites (72.25%), followed by trinucleotide repeats (15.35%), while the remaining SSRs accounted for less than 13%. The motif AG/CT (49.96%) and AT/TA (40.14%) were the most and the second most abundant among all identified SSR motifs, respectively; meanwhile, AAT/ATT (41.29%) and AAAT/ATTT (67.47%) were the most common among trinucleotides and tetranucleotides, respectively. A total of 300 primer pairs were designed to screen six tea cultivars for polymorphisms of SSR markers using the five selected repeat types of microsatellite sequences. The resulting 96 SSR markers that yielded polymorphic and unambiguous bands were further deployed on 47 tea cultivars for genetic diversity assessment, demonstrating high polymorphism of these SSR markers. Remarkably, the dendrogram revealed that the phylogenetic relationships among these tea cultivars are highly consistent with their genetic backgrounds or places of origin. The identified genome-wide SSRs and newly developed SSR markers will provide a powerful means for genetic researches in tea plant, including genetic diversity and evolutionary origin analysis, fingerprinting, QTL mapping, and marker-assisted selection for breeding.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.