June 1, 2021  |  

Genome assembly strategies of the recent polyploid, Coffea arabica.

Arabica coffee, revered for its taste and aroma, has a complex genome. It is an allotetraploid (2n=4x=44) with a genome size of approximately 1.3 Gb, derived from the recent (< 0.6 Mya) hybridization of two diploid progenitors (2n=2x=22), C. canephora (710 Mb) and C. eugenioides (670 Mb). Both parental species diverged recently (< 4.2Mya) and their genomes are highly homologous. To facilitate assembly, a dihaploid plant was chosen for sequencing. Initial genome assembly attempts with short read data produced an assembly covering 1,031 Mb of the C. arabica genome with a contig L50 of 9kb. By implementation of long read PacBio at greater than 50x coverage and cutting-edge PacBio software, a de novo PacBio-only genome assembly was constructed that covers 1,042 Mb of the genome with an L50 of 267 kb. The two assemblies were assessed and compared to determine gene content, chimeric regions, and the ability to separate the parental genomes. A genetic map that contains 600 SSRs is being used for anchoring the contigs and improve the sub-genome differentiation together with the search of sub-genome specific SNPs. PacBio transcriptome sequencing is currently being added to finalize gene annotation of the polished assembly. The finished genome assembly will be used to guide re-sequencing assemblies of parental genomes (C. canephora and C. eugenioides) as well as a template for GBS analysis and whole genome re-sequencing of a set of C. arabica accessions representative of the species diversity. The obtained data will provide powerful genomic tools to enable more efficient coffee breeding strategies for this crop, which is highly susceptible to climate change and is the main source of income for millions of small farmers in producing countries.

June 1, 2021  |  

Comprehensive genome and transcriptome structural analysis of a breast cancer cell line using PacBio long read sequencing

Genomic instability is one of the hallmarks of cancer, leading to widespread copy number variations, chromosomal fusions, and other structural variations. The breast cancer cell line SK-BR-3 is an important model for HER2+ breast cancers, which are among the most aggressive forms of the disease and affect one in five cases. Through short read sequencing, copy number arrays, and other technologies, the genome of SK-BR-3 is known to be highly rearranged with many copy number variations, including an approximately twenty-fold amplification of the HER2 oncogene. However, these technologies cannot precisely characterize the nature and context of the identified genomic events and other important mutations may be missed altogether because of repeats, multi-mapping reads, and the failure to reliably anchor alignments to both sides of a variation. To address these challenges, we have sequenced SK-BR-3 using PacBio long read technology. Using the new P6-C4 chemistry, we generated more than 70X coverage of the genome with average read lengths of 9-13kb (max: 71kb). Using Lumpy for split-read alignment analysis, as well as our novel assembly-based algorithms for finding complex variants, we have developed a detailed map of structural variations in this cell line. Taking advantage of the newly identified breakpoints and combining these with copy number assignments, we have developed an algorithm to reconstruct the mutational history of this cancer genome. From this we have discovered a complex series of nested duplications and translocations between chr17 and chr8, two of the most frequent translocation partners in primary breast cancers, resulting in amplification of HER2. We have also carried out full-length transcriptome sequencing using PacBio’s Iso-Seq technology, which has revealed a number of previously unrecognized gene fusions and isoforms. Combining long-read genome and transcriptome sequencing technologies enables an in-depth analysis of how changes in the genome affect the transcriptome, including how gene fusions are created across multiple chromosomes. This analysis has established the most complete cancer reference genome available to date, and is already opening the door to applying long-read sequencing to patient samples with complex genome structures.

June 1, 2021  |  

A comprehensive study of the sugar pine (Pinus lambertiana) transcriptome implemented through diverse next-generation sequencing approaches

The assembly, annotation, and characterization of the sugar pine (Pinus lambertiana Dougl.) transcriptome represents an opportunity to study the genetic mechanisms underlying resistance to the invasive white pine blister rust (Cronartium ribicola) as well as responses to other abiotic stresses. The assembled transcripts also provide a resource to improve the genome assembly. We selected a diverse set of tissues allowing the first comprehensive evaluation of the sugar pine gene space. We have combined short read sequencing technologies (Illumina MiSeq and HiSeq) with the relatively new Pacific Biosciences Iso-Seq approach. From the 2.5 billion and 1.6 million Illumina and PacBio (46 SMRT cells) reads, 33,720 unigenes were de novo assembled. Comparison of sequencing technologies revealed improved coverage with Illumina HiSeq reads and better splice variant detection with PacBio Iso-Seq reads. The genes identified as unique to each library ranges from 199 transcripts (basket seedling) to 3,482 transcripts (female cones). In total, 10,026 transcripts were shared by all libraries. Genes differentially expressed in response to these provided insight on abiotic and biotic stress responses. To analyze orthologous sequences, we compared the translated sequences against 19 plant species, identifying 7,229 transcripts that clustered uniquely among the conifers. We have generated here a high quality transcriptome from one WPBR susceptible and one WPBR resistant sugar pine individual. Through the comprehensive tissue sampling and the depth of the sequencing achieved, detailed information on disease resistance can be further examined.

June 1, 2021  |  

Screening and characterization of causative structural variants for bipolar disorder in a significantly linked chromosomal region onXq24-q27 in an extended pedigree from a genetic isolate

Bipolar disorder (BD) is a phenotypically and genetically complex and debilitating neurological disorder that affects 1% of the worldwide population. There is compelling evidence from family, twin and adoption studies supporting the involvement of a genetic predisposition in BD with estimated heritability up to ~ 80%. The risk in first-degree relatives is ten times higher than in the general population. Linkage and association studies have implicated multiple putative chromosomal loci for BP susceptibility, however no disease genes have been identified to date.

June 1, 2021  |  

Scalability and reliability improvements to the Iso-Seq analysis pipeline enables higher throughput sequencing of full-length cancer transcripts

The characterization of gene expression profiles via transcriptome sequencing has proven to be an important tool for characterizing how genomic rearrangements in cancer affect the biological pathways involved in cancer progression and treatment response. More recently, better resolution of transcript isoforms has shown that this additional level of information may be useful in stratifying patients into cancer subtypes with different outcomes and responses to treatment.1 The Iso-Seq protocol developed at PacBio is uniquely able to deliver full-length, high-quality cDNA sequences, allowing the unambiguous determination of splice variants, identifying potential biomarkers and yielding new insights into gene fusion events. Recent improvements to the Iso-Seq bioinformatics pipeline increases the speed and scalability of data analysis while boosting the reliability of isoform detection and cross-platform usability. Here we report evaluation of Sequel Iso-Seq runs of human UHRR samples with spiked-in synthetic RNA controls and show that the new pipeline is more CPU efficient and recovers more human and synthetic isoforms while reducing the number of false positives. We also share the results of sequencing the well-characterized HCC-1954 breast cancer and normal breast cell lines, which will be made publicly available. Combined with the recent simplification of the Iso-Seq sample preparation2, the new analysis pipeline completes a streamlined workflow for revealing the most comprehensive picture of transcriptomes at the throughput needed to characterize cancer samples.

June 1, 2021  |  

Full-length transcriptome sequencing of melanoma cell line complements long-read assessment of genomic rearrangements

Transcriptome sequencing has proven to be an important tool for understanding the biological changes in cancer genomes including the consequences of structural rearrangements. Short read sequencing has been the method of choice, as the high throughput at low cost allows for transcript quantitation and the detection of even rare transcripts. However, the reads are generally too short to reconstruct complete isoforms. Conversely, long-read approaches can provide unambiguous full-length isoforms, but lower throughput has complicated quantitation and high RNA input requirements has made working with cancer samples challenging. Recently, the COLO 829 cell line was sequenced to 50-fold coverage with PacBio SMRT Sequencing. To validate and extend the findings from this effort, we have generated long-read transcriptome data using an updated PacBio Iso-Seq method, the results of which will be shared at the AACR 2019 General Meeting. With this complimentary transcriptome data, we demonstrate how recent innovations in the PacBio Iso-Seq method sample preparation and sequencing chemistry have made long-read sequencing of cancer transcriptomes more practical. In particular, library preparation has been simplified and throughput has increased. The improved protocol has reduced sample prep time from several days to one day while reducing the sample input requirements ten-fold. In addition, the incorporation of unique molecular identifier (UMI) tags into the workflow has improved the bioinformatics analysis. Yield has also increased, with v3 sequencing chemistry typically delivering > 30 Gb per SMRT Cell 1M. By integrating long and short read data, we demonstrate that the Iso-Seq method is a practical tool for annotating cancer genomes with high-quality transcript information.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.