Menu
April 21, 2020  |  

Transcriptome Analysis Reveals the Accumulation Mechanism of Anthocyanins in Buckwheat (Fagopyrum esculentum Moench) Cotyledons and Flowers.

Buckwheat (Fagopyrum esculentum) is a valuable crop which can produce multiple human beneficial secondary metabolites, for example, the anthocyanins in sprouts and flowers. However, as the predominant group of visible polyphenols in pigmentation, little is known about the molecular mechanisms underlying the anthocyanin biosynthesis within buckwheat. In this study, a comparative transcriptome analysis of green and red common buckwheat cultivars was carried out through RNA sequencing. Overall, 3727 and 5323 differently expressed genes (DEGs) were identified in flowers and cotyledons, respectively. Through GO and KEGG analysis, we revealed that DEGs in flowers and cotyledons are predominately involved in biosynthesis of anthocyanin. A total of 42 unigenes encoding 11 structural enzymes of the anthocyanin biosynthesis were identified as DEGs. We also identified some transcription factor families involved in the regulation of anthocyanin biosynthesis. Real-time qPCR validation of candidate genes was performed in flowers and cotyledons, and the results suggested that the high expression level of structural genes involved in anthocyanin biosynthetic pathway promotes anthocyanin accumulation. Our results provide the insight understanding for coloration of red common buckwheat.


April 21, 2020  |  

Comprehensive transcriptome analysis reveals genes potentially involved in isoflavone biosynthesis in Pueraria thomsonii Benth.

Pueraria thomsonii Benth is an important medicinal plant. Transcriptome sequencing, unigene assembly, the annotation of transcripts and the study of gene expression profiles play vital roles in gene function research. However, the full-length transcriptome of P. thomsonii remains unknown. Here, we obtained 44,339 nonredundant transcripts of P. thomsonii by using the PacBio RS II Isoform and Illumina sequencing platforms, of which 43,195 were annotated genes. Compared with the expression levels in the plant roots, those of transcripts with a |fold change| = 4 and FDR < 0.01 in the leaves or stems were assigned as differentially expressed transcripts (DETs). In total, we found 9,225 DETs, 32 of which came from structural genes that were potentially involved in isoflavone biosynthesis. The expression profiles of 8 structural genes from the RNA-Seq data were validated by qRT-PCR. We identified 437 transcription factors (TFs) that were positively or negatively correlated with at least 1 of the structural genes involved in isoflavone biosynthesis using Pearson correlation coefficients (r) (r > 0.8 or r < -0.8). We also identified a total of 32 microRNAs (miRNAs), which targeted 805 transcripts. These miRNAs caused enriched function in 'ATP binding', 'defense response', 'ADP binding', and 'signal transduction'. Interestingly, MIR156a potentially promoted isoflavone biosynthesis by repressing SBP, and MIR319 promoted isoflavone biosynthesis by repressing TCP and HB-HD-ZIP. Finally, we identified 2,690 alternative splicing events, including that of the structural genes of trans-cinnamate 4-monooxygenase and pullulanase, which are potentially involved in the biosynthesis of isoflavone and starch, respectively, and of three TFs potentially involved in isoflavone biosynthesis. Together, these results provide us with comprehensive insight into the gene expression and regulation of P. thomsonii.


April 21, 2020  |  

Genomic and transcriptomic insights into the survival of the subaerial cyanobacterium Nostoc flagelliforme in arid and exposed habitats.

The cyanobacterium Nostoc flagelliforme is an extremophile that thrives under extraordinary desiccation and ultraviolet (UV) radiation conditions. To investigate its survival strategies, we performed whole-genome sequencing of N. flagelliforme CCNUN1 and transcriptional profiling of its field populations upon rehydration in BG11 medium. The genome of N. flagelliforme is 10.23 Mb in size and contains 10 825 predicted protein-encoding genes, making it one of the largest complete genomes of cyanobacteria reported to date. Comparative genomics analysis among 20 cyanobacterial strains revealed that genes related to DNA replication, recombination and repair had disproportionately high contributions to the genome expansion. The ability of N. flagelliforme to thrive under extreme abiotic stresses is supported by the acquisition of genes involved in the protection of photosynthetic apparatus, the formation of monounsaturated fatty acids, responses to UV radiation, and a peculiar role of ornithine metabolism. Transcriptome analysis revealed a distinct acclimation strategy to rehydration, including the strong constitutive expression of genes encoding photosystem I assembly factors and the involvement of post-transcriptional control mechanisms of photosynthetic resuscitation. Our results provide insights into the adaptive mechanisms of subaerial cyanobacteria in their harsh habitats and have important implications to understand the evolutionary transition of cyanobacteria from aquatic environments to terrestrial ecosystems. © 2019 Society for Applied Microbiology and John Wiley & Sons Ltd.


April 21, 2020  |  

Genetic map-guided genome assembly reveals a virulence-governing minichromosome in the lentil anthracnose pathogen Colletotrichum lentis.

Colletotrichum lentis causes anthracnose, which is a serious disease on lentil and can account for up to 70% crop loss. Two pathogenic races, 0 and 1, have been described in the C. lentis population from lentil. To unravel the genetic control of virulence, an isolate of the virulent race 0 was sequenced at 1481-fold genomic coverage. The 56.10-Mb genome assembly consists of 50 scaffolds with N50 scaffold length of 4.89 Mb. A total of 11 436 protein-coding gene models was predicted in the genome with 237 coding candidate effectors, 43 secondary metabolite biosynthetic enzymes and 229 carbohydrate-active enzymes (CAZymes), suggesting a contraction of the virulence gene repertoire in C. lentis. Scaffolds were assigned to 10 core and two minichromosomes using a population (race 0 × race 1, n = 94 progeny isolates) sequencing-based, high-density (14 312 single nucleotide polymorphisms) genetic map. Composite interval mapping revealed a single quantitative trait locus (QTL), qClVIR-11, located on minichromosome 11, explaining 85% of the variability in virulence of the C. lentis population. The QTL covers a physical distance of 0.84 Mb with 98 genes, including seven candidate effector and two secondary metabolite genes. Taken together, the study provides genetic and physical evidence for the existence of a minichromosome controlling the C. lentis virulence on lentil. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.


April 21, 2020  |  

In-depth analysis of the genome of Trypanosoma evansi, an etiologic agent of surra.

Trypanosoma evansi is the causative agent of the animal trypanosomiasis surra, a disease with serious economic burden worldwide. The availability of the genome of its closely related parasite Trypanosoma brucei allows us to compare their genetic and evolutionarily shared and distinct biological features. The complete genomic sequence of the T. evansi YNB strain was obtained using a combination of genomic and transcriptomic sequencing, de novo assembly, and bioinformatic analysis. The genome size of the T. evansi YNB strain was 35.2 Mb, showing 96.59% similarity in sequence and 88.97% in scaffold alignment with T. brucei. A total of 8,617 protein-coding genes, accounting for 31% of the genome, were predicted. Approximately 1,641 alternative splicing events of 820 genes were identified, with a majority mediated by intron retention, which represented a major difference in post-transcriptional regulation between T. evansi and T. brucei. Disparities in gene copy number of the variant surface glycoprotein, expression site-associated genes, microRNAs, and RNA-binding protein were clearly observed between the two parasites. The results revealed the genomic determinants of T. evansi, which encoded specific biological characteristics that distinguished them from other related trypanosome species.


April 21, 2020  |  

Transcriptome analysis reveals multiple signal network contributing to the Verticillium wilt resistance in eggplant

Verticillium wilt is a devastating disease in eggplants. In order to understand the molecular mechanism of disease resistance in eggplants, transcriptomes of Verticillium wilt infected eggplants were detected. A total of 480, 518, 887 and 1 046 Verticillium wilt related differentially expressed genes were identified at 6 (V6), 12 (V12), 24 (V24) and 48?h (V48), respectively. COG function classification revealed that most of DEGs functioned in “Amino acid transport and metabolism”, “Cytoskeleton” and “Cell motility”. In addition, compared the control plants (V0) to infected eggplants (V6-V48), a total of 111 common DEGs were identified. Except for “General function prediction only”, most of the DEGs enriched in “Signal transduction”. DEGs associated to different hormone signals, including GID1B, ROPGAP1, OPT3 and CDPK, were identified throughout the whole infection process. Cross-talk among defense signal pathways plays major roles in the Verticillium wilt disease resistance in eggplants.


April 21, 2020  |  

The Single-molecule long-read sequencing of Scylla paramamosain.

Scylla paramamosain is an important aquaculture crab, which has great economical and nutritional value. To the best of our knowledge, few full-length crab transcriptomes are available. In this study, a library composed of 12 different tissues including gill, hepatopancreas, muscle, cerebral ganglion, eyestalk, thoracic ganglia, intestine, heart, testis, ovary, sperm reservoir, and hemocyte was constructed and sequenced using Pacific Biosciences single-molecule real-time (SMRT) long-read sequencing technology. A total of 284803 full-length non-chimeric reads were obtained, from which 79005 high-quality unique transcripts were obtained after error correction and sequence clustering and redundant. Additionally, a total of 52544 transcripts were annotated against protein database (NCBI nonredundant, Swiss-Prot, KOG, and KEGG database). A total of 23644 long non-coding RNAs (lncRNAs) and 131561 simple sequence repeats (SSRs) were identified. Meanwhile, the isoforms of many genes were also identified in this study. Our study provides a rich set of full-length cDNA sequences for S. paramamosain, which will greatly facilitate S. paramamosain research.


April 21, 2020  |  

RNA-seq of HaHV-1-infected abalones reveals a common transcriptional signature of Malacoherpesviruses.

Haliotid herpesvirus-1 (HaHV-1) is the viral agent causative of abalone viral ganglioneuritis, a disease that has severely affected gastropod aquaculture. Although limited, the sequence similarity between HaHV-1 and Ostreid herpesvirus-1 supported the assignment of both viruses to Malacoherpesviridae, a Herpesvirales family distantly related with other viruses. In this study, we reported the first transcriptional data of HaHV-1, obtained from an experimental infection of Haliotis diversicolor supertexta. We also sequenced the genome draft of the Chinese HaHV-1 variant isolated in 2003 (HaHV-1-CN2003) by PacBio technology. Analysis of 13 million reads obtained from 3 RNA samples at 60?hours post injection (hpi) allowed the prediction of 51 new ORFs for a total of 117 viral genes and the identification of 207 variations from the reference genome, consisting in 135 Single Nucleotide Polymorphisms (SNPs) and 72 Insertions or Deletions (InDels). The pairing of genomic and transcriptomic data supported the identification of 60 additional SNPs, representing viral transcriptional variability and preferentially grouped in hotspots. The expression analysis of HaHV-1 ORFs revealed one putative secreted protein, two putative capsid proteins and a possible viral capsid protease as the most expressed genes and demonstrated highly synchronized viral expression patterns of the 3 infected animals at 60?hpi. Quantitative reverse transcription data of 37 viral genes supported the burst of viral transcription at 30 and 60?hpi during the 72?hours of the infection experiment, and allowed the distinction between early and late viral genes.


April 21, 2020  |  

The Impact of cDNA Normalization on Long-Read Sequencing of a Complex Transcriptome

Normalization of cDNA is widely used to improve the coverage of rare transcripts in analysis of transcriptomes employing next-generation sequencing. Recently, long-read technology has been emerging as a powerful tool for sequencing and construction of transcriptomes, especially for complex genomes containing highly similar transcripts and transcript-spliced isoforms. Here, we analyzed the transcriptome of sugarcane, with a highly polyploidy plant genome, by PacBio isoform sequencing (Iso-Seq) of two different cDNA library preparations, with and without a normalization step. The results demonstrated that, while the two libraries included many of the same transcripts, many longer transcripts were removed and many new generally shorter transcripts were detected by normalization. For the same input cDNA and the same data yield, the normalized library recovered more total transcript isoforms, number of predicted gene families and orthologous groups, resulting in a higher representation for the sugarcane transcriptome, compared to the non-normalized library. The non-normalized library, on the other hand, included a wider transcript length range with more longer transcripts above ~1.25 kb, more transcript isoforms per gene family and gene ontology terms per transcript. A large proportion of the unique transcripts comprising ~52% of the normalized library were expressed at a lower level than the unique transcripts from the non-normalized library, across three tissue types tested including leaf, stalk and root. About 83% of the total 5,348 predicted long noncoding transcripts was derived from the normalized library, of which ~80% was derived from the lowly expressed fraction. Functional annotation of the unique transcripts suggested that each library enriched different functional transcript fractions. This demonstrated the complementation of the two approaches in obtaining a complete transcriptome of a complex genome at the sequencing depth used in this study.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.