April 21, 2020  |  

Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits.

The ruminants are one of the most successful mammalian lineages, exhibiting morphological and habitat diversity and containing several key livestock species. To better understand their evolution, we generated and analyzed de novo assembled genomes of 44 ruminant species, representing all six Ruminantia families. We used these genomes to create a time-calibrated phylogeny to resolve topological controversies, overcoming the challenges of incomplete lineage sorting. Population dynamic analyses show that population declines commenced between 100,000 and 50,000 years ago, which is concomitant with expansion in human populations. We also reveal genes and regulatory elements that possibly contribute to the evolution of the digestive system, cranial appendages, immune system, metabolism, body size, cursorial locomotion, and dentition of the ruminants. Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


April 21, 2020  |  

Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude.

Crucihimalaya himalaica, a close relative of Arabidopsis and Capsella, grows on the Qinghai-Tibet Plateau (QTP) about 4,000 m above sea level and represents an attractive model system for studying speciation and ecological adaptation in extreme environments. We assembled a draft genome sequence of 234.72 Mb encoding 27,019 genes and investigated its origin and adaptive evolutionary mechanisms. Phylogenomic analyses based on 4,586 single-copy genes revealed that C. himalaica is most closely related to Capsella (estimated divergence 8.8 to 12.2 Mya), whereas both species form a sister clade to Arabidopsis thaliana and Arabidopsis lyrata, from which they diverged between 12.7 and 17.2 Mya. LTR retrotransposons in C. himalaica proliferated shortly after the dramatic uplift and climatic change of the Himalayas from the Late Pliocene to Pleistocene. Compared with closely related species, C. himalaica showed significant contraction and pseudogenization in gene families associated with disease resistance and also significant expansion in gene families associated with ubiquitin-mediated proteolysis and DNA repair. We identified hundreds of genes involved in DNA repair, ubiquitin-mediated proteolysis, and reproductive processes with signs of positive selection. Gene families showing dramatic changes in size and genes showing signs of positive selection are likely candidates for C. himalaica’s adaptation to intense radiation, low temperature, and pathogen-depauperate environments in the QTP. Loss of function at the S-locus, the reason for the transition to self-fertilization of C. himalaica, might have enabled its QTP occupation. Overall, the genome sequence of C. himalaica provides insights into the mechanisms of plant adaptation to extreme environments.Copyright © 2019 the Author(s). Published by PNAS.


April 21, 2020  |  

Characterization of the genome of a Nocardia strain isolated from soils in the Qinghai-Tibetan Plateau that specifically degrades crude oil and of this biodegradation.

A strain of Nocardia isolated from crude oil-contaminated soils in the Qinghai-Tibetan Plateau degrades nearly all components of crude oil. This strain was identified as Nocardia soli Y48, and its growth conditions were determined. Complete genome sequencing showed that N. soli Y48 has a 7.3?Mb genome and many genes responsible for hydrocarbon degradation, biosurfactant synthesis, emulsification and other hydrocarbon degradation-related metabolisms. Analysis of the clusters of orthologous groups (COGs) and genomic islands (GIs) revealed that Y48 has undergone significant gene transfer events to adapt to changing environmental conditions (crude oil contamination). The structural features of the genome might provide a competitive edge for the survival of N. soli Y48 in oil-polluted environments and reflect the adaptation of coexisting bacteria to distinct nutritional niches.Copyright © 2018. Published by Elsevier Inc.


April 21, 2020  |  

Characterization and analysis of the transcriptome in Gymnocypris selincuoensis on the Qinghai-Tibetan Plateau using single-molecule long-read sequencing and RNA-seq.

The lakes on the Qinghai-Tibet Plateau (QTP) are the largest and highest lake group in the world. Gymnocypris selincuoensis is the only cyprinid fish living in lake Selincuo, the largest lake on QTP. However, its genetic resource is still blank, limiting studies on molecular and genetic analysis. In this study, the transcriptome of G. selincuoensis was first generated by using PacBio Iso-Seq and Illumina RNA-seq. A full-length (FL) transcriptome with 75,435 transcripts was obtained by Iso-Seq with N50 length of 3,870 bp. Among all transcripts, 75,016 were annotated to public databases, 64,710 contain complete open reading frames and 2,811 were long non-coding RNAs. Based on all- vs.-all BLAST, 2,069 alternative splicing events were detected, and 80% of them were validated by reverse transcription polymerase chain reaction (RT-PCR). Tissue gene expression atlas showed that the number of detected expressed transcripts ranged from 37,397 in brain to 19,914 in muscle, with 10,488 transcripts detected in all seven tissues. Comparative genomic analysis with other cyprinid fishes identified 77 orthologous genes with potential positive selection (Ka/Ks > 0.3). A total of 56,696 perfect simple sequence repeats were identified from FL transcripts. Our results provide valuable genetic resources for further studies on adaptive evolution, gene expression and population genetics in G. selincuoensis and other congeneric fishes. © The Author(s) 2019. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


April 21, 2020  |  

Fudania jinshanensis gen. nov., sp. nov., isolated from faeces of the Tibetan antelope (Pantholops hodgsonii) in China.

Two hitherto unknown bacteria (strains 313T and 352) were recovered from the faeces of Tibetan antelopes on the Tibet-Qinghai Plateau, PR China. Cells were rod-shaped and Gram-stain-positive. The optimal growth conditions were at 37?°C and pH 7. The isolates were closely related to Actinotignum sanguinis (92.6?% 16S rRNA gene sequence similarity), Arcanobacterium haemolyticum (92.5?%), Actinotignum schaalii (92.4?%), Actinobaculum massiliense (92.2?%) and Flaviflexus huanghaiensis (91.6?%). Phylogenetic analyses showed that strains 313T and 352 clustered independently in the vicinity of the genera Actinotignum, Actinobaculum and Flaviflexus, but could not be classified clearly as a member of any of these genera. Phylogenomic analysis also indicated that strains 313T and 352 formed an independent branch in the family Actinomycetaceae. The major cellular fatty acids of the strains were C16?:?0 and C18?:?1?9c. The polar lipids comprised diphosphatidylglycerol, phosphatidylinositol mannoside, phosphatidylglycerol, phosphatidylinositol and five unidentified components. The peptidoglycan contained lysine, alanine and glutamic acid. The respiratory quinone was absent. The whole-cell sugars included glucose and rhamnose. The DNA G+C?content of strain 313T was 60.6?mol%. Based on the low 16S rRNA gene sequence similarities, its taxonomic position in the phylogenetic and phylogenomic trees and its unique lipid pattern, we propose that strains 313T and 352 represent members of a novel species in a new genus, for which the name Fudania jinshanensis gen. nov., sp. nov. is proposed. The type strain is 313T (=CGMCC 4.7453T=DSM 106216T).


April 21, 2020  |  

Chromosome-level genome assembly of Triplophysa tibetana, a fish adapted to the harsh high-altitude environment of the Tibetan Plateau.

Triplophysa is an endemic fish genus of the Tibetan Plateau in China. Triplophysa tibetana, which lives at a recorded altitude of ~4,000 m and plays an important role in the highland aquatic ecosystem, serves as an excellent model for investigating high-altitude environmental adaptation. However, evolutionary and conservation studies of T. tibetana have been limited by scarce genomic resources for the genus Triplophysa. In the present study, we applied PacBio sequencing and the Hi-C technique to assemble the T. tibetana genome. A 652-Mb genome with 1,325 contigs with an N50 length of 3.1 Mb was obtained. The 1,137 contigs were further assembled into 25 chromosomes, representing 98.7% and 80.47% of all contigs at the base and sequence number level, respectively. Approximately 260 Mb of sequence, accounting for ~39.8% of the genome, was identified as repetitive elements. DNA transposons (16.3%), long interspersed nuclear elements (12.4%) and long terminal repeats (11.0%) were the most repetitive types. In total, 24,372 protein-coding genes were predicted in the genome, and ~95% of the genes were functionally annotated via a search in public databases. Using whole genome sequence information, we found that T. tibetana diverged from its common ancestor with Danio rerio ~121.4 million years ago. The high-quality genome assembled in this work not only provides a valuable genomic resource for future population and conservation studies of T. tibetana, but it also lays a solid foundation for further investigation into the mechanisms of environmental adaptation of endemic fishes in the Tibetan Plateau. © 2019 John Wiley & Sons Ltd.


April 21, 2020  |  

Comparative Genome Characterization of a Petroleum-Degrading Bacillus subtilis Strain DM2.

The complete genome sequence of Bacillus subtilis strain DM2 isolated from petroleum-contaminated soil on the Tibetan Plateau was determined. The genome of strain DM2 consists of a circular chromosome of 4,238,631 bp for 4458 protein-coding genes and a plasmid of 84,240 bp coding for 103 genes. Thirty-four genomic islands coding for 330 proteins and 5 prophages are found in the genome. The DDH value shows that strain DM2 belongs to B. subtilis subsp. subtilis subspecies, but significant variations of the genome are also present. Comparative analysis showed that the genome of strain DM2 encodes some strain-specific proteins in comparison with B. subtilis subsp. subtilis str. 168, such as carboxymuconolactone decarboxylase family protein, gfo/Idh/MocA family oxidoreductases, GlsB/YeaQ/YmgE family stress response membrane protein, HlyC/CorC family transporters, LLM class flavin-dependent oxidoreductase, and LPXTG cell wall anchor domain-containing protein. Most of the common strain-specific proteins in DM2 and MJ01 strains, or proteins unique to DM2 strain, are involved in the pathways related to stress response, signaling, and hydrocarbon degradation. Furthermore, the strain DM2 genome contains 122 genes coding for developed two-component systems and 138 genes coding for ABC transporter systems. The prominent features of the strain DM2 genome reflect the evolutionary fitness of this strain to harsh conditions and hydrocarbon utilization.


April 21, 2020  |  

Genomic Analyses Reveal Evidence of Independent Evolution, Demographic History, and Extreme Environment Adaptation of Tibetan Plateau Agaricus bisporus.

Agaricus bisporus distributed in the Tibetan Plateau of China has high-stress resistance that is valuable for breeding improvements. However, its evolutionary history, specialization, and adaptation to the extreme Tibetan Plateau environment are largely unknown. Here, we performed de novo genome sequencing of a representative Tibetan Plateau wild strain ABM and comparative genomic analysis with the reported European strain H97 and H39. The assembled ABM genome was 30.4 Mb in size, and comprised 8,562 protein-coding genes. The ABM genome shared highly conserved syntenic blocks and a few inversions with H97 and H39. The phylogenetic tree constructed by 1,276 single-copy orthologous genes in nine fungal species showed that the Tibetan Plateau and European A. bisporus diverged ~5.5 million years ago. Population genomic analysis using genome resequencing of 29 strains revealed that the Tibetan Plateau population underwent significant differentiation from the European and American populations and evolved independently, and the global climate changes critically shaped the demographic history of the Tibetan Plateau population. Moreover, we identified key genes that are related to the cell wall and membrane system, and the development and defense systems regulated A. bisporus adapting to the harsh Tibetan Plateau environment. These findings highlight the value of genomic data in assessing the evolution and adaptation of mushrooms and will enhance future genetic improvements of A. bisporus.


April 21, 2020  |  

Identification of Candidate Genes for the Plateau Adaptation of a Tibetan Amphipod, Gammarus lacustris, Through Integration of Genome and Transcriptome Sequencing.

The amphipod Gammarus lacustris has been distributing in the Tibetan region with well-known uplifts of the Tibetan plateau. It is hence considered as a good model for investigating stress adaptations of the plateau. Here, we sequenced the whole-genome and full-length transcriptome of G. lacustris, and compared the transcriptome results with its counterpart Gammarus pisinnus from a nearby plain. Our main goal was to provide a genomic resource for investigation of genetic mechanisms, by which G. lacustris adapted to living on the plateau. The final draft genome assembly of G. lacustris was 5.07 gigabases (Gb), and it contained 443,304 scaffolds (>2 kb) with an N50 of 2,578 bp. A total of 8,858 unigenes were predicted in the full-length transcriptome of G. lacustris, with an average gene length of 1,811 bp. Compared with the G. pisinnus transcriptome, 2,672 differentially expressed genes (DEGs) were up-regulated and 2,881 DEGs were down-regulated in the G. lacustris transcriptome. Along with these critical DEGs, several enriched metabolic pathways, such as oxidative phosphorylation, ribosome, cell energy homeostasis, glycolysis and gluconeogenesis, were predicted to play essential roles in the plateau adaptation. In summary, the present study provides a genomic basis for understanding the plateau adaption of G. lacustris, which lays a fundamental basis for further biological and ecological studies on other resident aquatic species in the Tibetan plateau.


April 21, 2020  |  

Origin and recent expansion of an endogenous gammaretroviral lineage in domestic and wild canids.

Vertebrate genomes contain a record of retroviruses that invaded the germlines of ancestral hosts and are passed to offspring as endogenous retroviruses (ERVs). ERVs can impact host function since they contain the necessary sequences for expression within the host. Dogs are an important system for the study of disease and evolution, yet no substantiated reports of infectious retroviruses in dogs exist. Here, we utilized Illumina whole genome sequence data to assess the origin and evolution of a recently active gammaretroviral lineage in domestic and wild canids.We identified numerous recently integrated loci of a canid-specific ERV-Fc sublineage within Canis, including 58 insertions that were absent from the reference assembly. Insertions were found throughout the dog genome including within and near gene models. By comparison of orthologous occupied sites, we characterized element prevalence across 332 genomes including all nine extant canid species, revealing evolutionary patterns of ERV-Fc segregation among species as well as subpopulations.Sequence analysis revealed common disruptive mutations, suggesting a predominant form of ERV-Fc spread by trans complementation of defective proviruses. ERV-Fc activity included multiple circulating variants that infected canid ancestors from the last 20 million to within 1.6 million years, with recent bursts of germline invasion in the sublineage leading to wolves and dogs.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.