September 22, 2019  |  

Single-molecule long-read transcriptome profiling of Platysternon megacephalum mitochondrial genome with gene rearrangement and control region duplication.

Platysternon megacephalum is the sole living representative of the poorly studied turtle lineage Platysternidae. Their mitochondrial genome has been subject to gene rearrangement and control region duplication, resulting in a unique mitochondrial gene order in vertebrates. In this study, we sequenced the first full-length turtle (P. megacephalum) liver transcriptome using single-molecule real-time sequencing to study the transcriptional mechanisms of its mitochondrial genome. ND5 and ND6 anti-sense (ND6AS) forms a single transcript with the same expression in the human mitochondrial genome, but here we demonstrated differential expression of the rearranged ND5 and ND6AS genes in P. megacephalum. And some polycistronic transcripts were also reported in this study. Notably, we detected some novel long non-coding RNAs with alternative polyadenylation from the duplicated control region, and a novel ND6AS transcript composed of a long non-coding sequence, ND6AS, and tRNA-GluAS. These results provide the first description of a mtDNA transcriptome with gene rearrangement and control region duplication. These findings further our understanding of the fundamental concepts of mitochondrial gene transcription and RNA processing, and provide a new insight into the mechanism of transcription regulation of the mitochondrial genome.


September 22, 2019  |  

Metataxonomics reveal vultures as a reservoir for Clostridium perfringens.

The Old World vulture may carry and spread pathogens for emerging infections since they feed on the carcasses of dead animals and participate in the sky burials of humans, some of whom have died from communicable diseases. Therefore, we studied the precise fecal microbiome of the Old World vulture with metataxonomics, integrating the high-throughput sequencing of almost full-length small subunit ribosomal RNA (16S rRNA) gene amplicons in tandem with the operational phylogenetic unit (OPU) analysis strategy. Nine vultures of three species were sampled using rectal swabs on the Qinghai-Tibet Plateau, China. Using the Pacific Biosciences sequencing platform, we obtained 54 135 high-quality reads of 16S rRNA amplicons with an average of 1442±6.9?bp in length and 6015±1058 reads per vulture. Those sequences were classified into 314 OPUs, including 102 known species, 50 yet to be described species and 161 unknown new lineages of uncultured representatives. Forty-five species have been reported to be responsible for human outbreaks or infections, and 23 yet to be described species belong to genera that include pathogenic species. Only six species were common to all vultures. Clostridium perfringens was the most abundant and present in all vultures, accounting for 30.8% of the total reads. Therefore, using the new technology, we found that vultures are an important reservoir for C. perfringens as evidenced by the isolation of 107 strains encoding for virulence genes, representing 45 sequence types. Our study suggests that the soil-related C. perfringens and other pathogens could have a reservoir in vultures and other animals.


September 22, 2019  |  

Precise fecal microbiome of the herbivorous Tibetan antelope inhabiting high-altitude alpine plateau

The metataxonomic approach combining 16S rRNA gene amplicon sequencing using the PacBio technology with the application of the operational phylogenetic unit (OPU) approach, has been used to analyze the fecal microbial composition of the high-altitude and herbivorous Tibetan antelopes. The fecal samples of the antelope were collected in Hoh Xil National Nature Reserve, at an altitude over 4500 m, the largest depopulated zone in Qinghai-Tibetan Plateau, China, where non-native animals or humans may experience life-threatening acute mountain sickness. In total, 104 antelope fecal samples were enrolled in this study, and were clustered into 61,258 operational taxonomic units (OTUs) at an identity of 98.7% and affiliated with 757 OPUs, including 144 known species, 256 potentially new species, 103 potentially higher taxa within known lineages. In addition, 254 comprised sequences not affiliating with any known family, and the closest relatives were unclassified lineages of existing orders or classes. A total of 42 out of 757 OPUs conformed to the core fecal microbiome, of which four major lineages, namely, un-cultured Ruminococcaceae, Lachnospiraceae, Akkermansia and Christensenellaceae were associated with human health or longevity. The current study reveals that the fecal core microbiome of antelope is mainly composited of uncultured bacteria. The most abundant core taxa, namely, uncultured Ruminococcaceae, uncultured Akkermansia, uncultured Bacteroides, uncultured Christensenellaceae, uncultured Mollicutes, and uncultured Lachnospiraceae, may represent new bacterial candidates at high taxa levels, and several may have beneficial roles in health promotion or anti-intestinal dysbiosis. These organisms should be further isolated and evaluated for potential effect on human health and longevity.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.