Menu
April 21, 2020  |  

Cichorium intybus L.?×?Cicerbita alpina Walbr.: doubled haploid chicory induction and CENH3 characterization

Intergeneric hybridization between industrial chicory (Cichorium intybus L.) and Cicerbita alpina Walbr. induces interspecific hybrids and haploid chicory plants after in vitro embryo rescue. The protocol yielded haploids in 5 out of 12 cultivars pollinated; altogether 18 haploids were regenerated from 2836 embryos, with a maximum efficiency of 1.96% haploids per cross. Obtained haploids were chromosome doubled with mitosis inhibitors trifluralin and oryzalin; exposure to 0.05 g L-1 oryzalin during one week was the most efficient treatment to regenerate doubled haploids. Inbreeding effects in vitro were limited, but the ploidy level affects morphology. Transcriptome sequencing revealed two unique copies of CENH3 in Cicerbita alpina Walbr. Comparison of CENH3.1 protein sequences of Cicerbita and Cichorium obtained through transcriptome and whole shotgun genome sequencing revealed two amino-acid substitutions at critical residues of the histone fold domain. These particular changes cause chromosome elimination and reduced centromere loading in several other species and might indicate a CENH3-dependent mechanism causing chromosome elimination of parental chromosomes during Cichorium?×?Cicerbita intergeneric hybridization. Our results provide insights in chromosome elimination and might increase the efficiency of haploid induction in Cichorium.


April 21, 2020  |  

Characterization of a male specific region containing a candidate sex determining gene in Atlantic cod.

The genetic mechanisms determining sex in teleost fishes are highly variable and the master sex determining gene has only been identified in few species. Here we characterize a male-specific region of 9?kb on linkage group 11 in Atlantic cod (Gadus morhua) harboring a single gene named zkY for zinc knuckle on the Y chromosome. Diagnostic PCR test of phenotypically sexed males and females confirm the sex-specific nature of the Y-sequence. We identified twelve highly similar autosomal gene copies of zkY, of which eight code for proteins containing the zinc knuckle motif. 3D modeling suggests that the amino acid changes observed in six copies might influence the putative RNA-binding specificity. Cod zkY and the autosomal proteins zk1 and zk2 possess an identical zinc knuckle structure, but only the Y-specific gene zkY was expressed at high levels in the developing larvae before the onset of sex differentiation. Collectively these data suggest zkY as a candidate master masculinization gene in Atlantic cod. PCR amplification of Y-sequences in Arctic cod (Arctogadus glacialis) and Greenland cod (Gadus macrocephalus ogac) suggests that the male-specific region emerged in codfishes more than 7.5 million years ago.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.