June 1, 2021  |  

Multiplex target enrichment using barcoded multi-kilobase fragments and probe-based capture technologies

Target enrichment capture methods allow scientists to rapidly interrogate important genomic regions of interest for variant discovery, including SNPs, gene isoforms, and structural variation. Custom targeted sequencing panels are important for characterizing heterogeneous, complex diseases and uncovering the genetic basis of inherited traits with more uniform coverage when compared to PCR-based strategies. With the increasing availability of high-quality reference genomes, customized gene panels are readily designed with high specificity to capture genomic regions of interest, thus enabling scientists to expand their research scope from a single individual to larger cohort studies or population-wide investigations. Coupled with PacBio® long-read sequencing, these technologies can capture 5 kb fragments of genomic DNA (gDNA), which are useful for interrogating intronic, exonic, and regulatory regions, characterizing complex structural variations, distinguishing between gene duplications and pseudogenes, and interpreting variant haplotyes. In addition, SMRT® Sequencing offers the lowest GC-bias and can sequence through repetitive regions. We demonstrate the additional insights possible by using in-depth long read capture sequencing for key immunology, drug metabolizing, and disease causing genes such as HLA, filaggrin, and cancer associated genes.


June 1, 2021  |  

Targeted enrichment without amplification and SMRT Sequencing of repeat-expansion disease causative genomic regions

Targeted sequencing has proven to be an economical means of obtaining sequence information for one or more defined regions of a larger genome. However, most target enrichment methods are reliant upon some form of amplification. Amplification removes the epigenetic marks present in native DNA, and some genomic regions, such as those with extreme GC content and repetitive sequences, are recalcitrant to faithful amplification. Yet, a large number of genetic disorders are caused by expansions of repeat sequences. Furthermore, for some disorders, methylation status has been shown to be a key factor in the mechanism of disease. We have developed a novel, amplification-free enrichment technique that employs the CRISPR/Cas9 system for specific targeting of individual human genes. This method, in conjunction with SMRT Sequencing’s long reads, high consensus accuracy, and uniform coverage, allows the sequencing of complex genomic regions that cannot be investigated with other technologies. Using human genomic DNA samples and this strategy, we have successfully targeted the loci of a number of repeat expansion disorders (HTT, FMR1, ATXN10, C9orf72). With this data, we demonstrate the ability to isolate hundreds of individual on-target molecules and accurately sequence through long repeat stretches, regardless of the extreme GC-content, followed by accurate sequencing on a single PacBio RS II SMRT Cell or Sequel SMRT Cell 1M. The method is compatible with multiplexing of multiple targets and multiple samples in a single reaction. Furthermore, this technique also preserves native DNA molecules for sequencing, allowing for the possibility of direct detection and characterization of epigenetic signatures. We demonstrate detection of 5-mC in human promoter sequences and CpG islands.


June 1, 2021  |  

Amplification-free targeted enrichment and SMRT Sequencing of repeat-expansion genomic regions

Targeted sequencing has proven to be an economical means of obtaining sequence information for one or more defined regions of a larger genome. However, most target enrichment methods are reliant upon some form of amplification. Amplification removes the epigenetic marks present in native DNA, and some genomic regions, such as those with extreme GC content and repetitive sequences, are recalcitrant to faithful amplification. Yet, a large number of genetic disorders are caused by expansions of repeat sequences. Furthermore, for some disorders, methylation status has been shown to be a key factor in the mechanism of disease.


June 1, 2021  |  

Amplification-free, CRISPR-Cas9 targeted enrichment and SMRT Sequencing of repeat-expansion disease causative genomic regions

Targeted sequencing has proven to be economical for obtaining sequence information for defined regions of the genome. However, most target enrichment methods are reliant upon some form of amplification which can negatively impact downstream analysis. For example, amplification removes epigenetic marks present in native DNA, including nucleotide methylation, which are hypothesized to contribute to disease mechanisms in some disorders. In addition, some genomic regions known to be causative of many genetic disorders have extreme GC content and/or repetitive sequences that tend to be recalcitrant to faithful amplification. We have developed a novel, amplification-free enrichment technique that employs the CRISPR/Cas9 system to target individual genes. This method, in conjunction with the long reads, high consensus accuracy, and uniform coverage of SMRT Sequencing, allows accurate sequence analysis of complex genomic regions that cannot be investigated with other technologies. Using this strategy, we have successfully targeted a number of repeat expansion disorder loci (HTT, FMR1, ATXN10, C9orf72).With this data, we demonstrate the ability to isolate thousands of individual on-target molecules and, using the Sequel System, accurately sequence through long repeats regardless of the extreme GC-content. The method is compatible with multiplexing of multiple target loci and multiple samples in a single reaction. Furthermore, because there is no amplification step, this technique also preserves native DNA molecules for sequencing, allowing for the direct detection and characterization of epigenetic signatures. To this end, we demonstrate the detection of 5-mC in the CGG repeat of the FMR1 gene that is responsible for Fragile X syndrome.


June 1, 2021  |  

No-amp targeted SMRT sequencing using a CRISPR-Cas9 enrichment method

Targeted sequencing of genomic DNA requires an enrichment method to generate detectable amounts of sequencing products. Genomic regions with extreme composition bias and repetitive sequences can pose a significant enrichment challenge. Many genetic diseases caused by repeat element expansions are representative of these challenging enrichment targets. PCR amplification, used either alone or in combination with a hybridization capture method, is a common approach for target enrichment. While PCR amplification can be used successfully with genomic regions of moderate to high complexity, it is the low-complexity regions and regions containing repetitive elements sometimes of indeterminate lengths due to repeat expansions that can lead to poor or failed PCR enrichment. We have developed an enrichment method for targeted SMRT Sequencing on the PacBio Sequel System using the CRISPR-Cas9 system that requires no PCR amplification. Briefly, a preformed SMRTbell library containing the target region of interest is cleaved with Cas9 through direct interaction with a sequence-specific guide RNA. After ligation with new poly(A) hairpin adapters, the asymmetric SMRTbell templates are enriched by magnetic bead separation. This method, paired with SMRT Sequencing’s long reads, high consensus accuracy, and uniform coverage, allows sequencing of genomic regions regardless of challenging sequence context that cannot be investigated with other technologies. The method is amenable to analyzing multiple samples and/or targets in a single reaction. In addition, this method also preserves epigenetic modifications allowing for the detection and characterization of DNA methylation which has been shown to be a key factor in the disease mechanism for some repeat expansion diseases. Here we present results of our latest No-Amp Targeted Sequencing procedure applied to the characterization of CAG triplet repeat expansions in the HTT gene responsible for Huntington’s Disease.


June 1, 2021  |  

Sequencing the previously unsequenceable using amplification-free targeted enrichment powered by CRISPR/Cas9

Genomic regions with extreme base composition bias and repetitive sequences have long proven challenging for targeted enrichment methods, as they rely upon some form of amplification. Similarly, most DNA sequencing technologies struggle to faithfully sequence regions of low complexity. This has especially been true for repeat expansion disorders such as Fragile X syndrome, Huntington’s disease and various Ataxias, where the repetitive elements range from several hundreds of bases to tens of kilobases. We have developed a robust, amplification-free targeted enrichment technique, called No-Amp Targeted Sequencing, that employs the CRISPR/Cas9 system. In conjunction with Single Molecule, Real-Time (SMRT) Sequencing, which delivers long reads spanning the entire repeat expansion, high consensus accuracy, and uniform coverage, these previously inaccessible regions are now accessible. This method is completely amplification-free, therefore removing any PCR errors and biases from the experiment. Furthermore, this technique also preserves native DNA molecules, allowing for direct detection and characterization of epigenetic signatures. The No-Amp method is a two-day protocol, compatible with multiplexing of multiple targets and samples in a single reaction, using as little as 1 µg of genomic DNA input per sample. We have successfully targeted a number of repeat expansion disorder loci (HTT, FMR1, ATXN10, C9orf72) with alleles as long as >2700 repeat unites (>13 kb). Using the No-Amp method we have isolated hundreds of individual on-target molecules, allowing for reliable repeat size estimation, mosaicism detection and identification of interruption sequences – all aspects of repeat expansion disorders which are important for better understanding the underlying disease mechanisms.


June 1, 2021  |  

Amplification-free protocol for targeted enrichment of repeat expansion genomic regions and SMRT Sequencing

Many genetic disorders are associated with repeat sequence expansions. Obtaining accurate DNA sequence information from these regions will facilitate researchers to further establish the relationship between these genetic disorders and underlying disease mechanisms. Moreover, repeat interruptions have also been shown to act as phenotypic modifiers in some disorders. Targeted sequencing is an economical way to obtain sequence information from one or more defined regions in a genome. However, most targeted enrichment and sequencing methods require some form of DNA amplification. Amplifying large regions with extreme GC content as seen in repeat expansion disorders is challenging and prone to introducing sequence artifacts. DNA amplification also removes any epigenetic signatures present in native DNA. This technique also preserves native DNA molecules for the possibility of direct characterization of epigenetic signatures.


June 1, 2021  |  

Amplification-free targeted enrichment powered by CRISPR-Cas9 and long-read Single Molecule Real-Time (SMRT) Sequencing can efficiently and accurately sequence challenging repeat expansion disorders

Genomic regions with extreme base composition bias and repetitive sequences have long proven challenging for targeted enrichment methods, as they rely upon some form of amplification. Similarly, most DNA sequencing technologies struggle to faithfully sequence regions of low complexity. This has been especially trying for repeat expansion disorders such as Fragile-X disease, Huntington disease and various Ataxias, where the repetitive elements range from several hundreds of bases to tens of kilobases. We have developed a robust, amplification-free targeted enrichment technique, called No-Amp Targeted Sequencing, that employs the CRISPR-Cas9 system. In conjunction with SMRT Sequencing, which delivers long reads spanning the entire repeat expansion, high consensus accuracy, and uniform coverage, these previously inaccessible regions are now accessible. This method is completely amplification-free, therefore removing any PCR errors and biases from the experiment. Furthermore, this technique also preserves native DNA molecules, allowing for direct detection and characterization of epigenetic signatures. The No-Amp method is a two-day protocol that is compatible with multiplexing of multiple targets and multiple samples in a single reaction, using as little as 1 µg of genomic DNA input per sample. We have successfully targeted a number of repeat expansion disorder loci including HTT, FMR1, C9orf7,2 as well as built an Ataxia panel which consists of 15 different disease-causing repeat expansion regions. Using the No-Amp method we have isolated hundreds of individual on-target molecules, allowing for reliable repeat size estimation, mosaicism detection and identification of interruption sequences with alleles as long as >2700 repeat unites ( >13 kb). In addition to multiplexing several targets, we have also multiplexed at least 20 samples in one experiment making the No-Amp Targeted Sequencing method a cost-effective option. Combining the CRISPR-Cas9 enrichment method with Single Molecule, Real-Time Sequencing provided us with base-level resolution of previously inaccessible regions of the genome, like disease-causing repeat expansions. No-Amp Targeted Sequencing captures, in one experiment, many aspects of repeat expansion disorders which are important for better understanding the underlying disease mechanisms.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.