As a cost-effective alternative to whole genome human sequencing, targeted sequencing of specific regions, such as exomes or panels of relevant genes, has become increasingly common. These methods typically include direct PCR amplification of the genomic DNA of interest, or the capture of these targets via probe-based hybridization. Commonly, these approaches are designed to amplify or capture exonic regions and thereby result in amplicons or fragments that are a few hundred base pairs in length, a length that is well-addressed with short-read sequencing technologies. These approaches typically provide very good coverage and can identify SNPs in the targeted region, but…
The long reads, random error, and unbiased sampling of SMRT Sequencing enables high quality, de novo assembly of the human genome. PacBio long reads are capable of resolving genomic variations at all size scales, including SNPs, insertions, deletions, inversions, translocations, and repeat expansions, all of which are important in understanding the genetic basis for human disease and difficult to access via other technologies. In demonstration of this, we report a new high-quality, diploid aware de novo assembly of Craig Venter’s well-studied genome.
Full-length gene capture solutions offer opportunities to screen and characterize structural variations and genetic diversity to understand key traits in plants and animals. Through a combined Roche NimbleGen probe capture and SMRT Sequencing strategy, we demonstrate the capability to resolve complex gene structures often observed in plant defense and developmental genes spanning multiple kilobases. The custom panel includes members of the WRKY plant-defense-signaling family, members of the NB-LRR disease-resistance family, and developmental genes important for flowering. The presence of repetitive structures and low-complexity regions makes short-read sequencing of these genes difficult, yet this approach allows researchers to obtain complete sequences…
The long reads, random error, and unbiased sampling of SMRT Sequencing enables high quality, de novo assembly of the human genome. PacBio long reads are capable of resolving genomic variations at all size scales, including SNPs, insertions, deletions, inversions, translocations, and repeat expansions, all of which are both important in understanding the genetic basis for human disease, and difficult to access via other technologies. In demonstration of this, we report a new high-quality, diploid-aware de novo assembly of Craig Venter’s well-studied genome.
Genes associated with several neurological disorders have been shown to be highly polymorphic. Targeted sequencing of these genes using NGS technologies is a powerful way to increase the cost-effectiveness of variant discovery and detection. However, for a comprehensive view of these target genes, it is necessary to have complete and uniform coverage across regions of interest. Unfortunately, short-read sequencing technologies are not ideal for these types of studies as they are prone to mis-mapping and often fail to span repetitive regions. Targeted sequencing with PacBio long reads provides the unique advantage of single-molecule observations of complex genomic regions. PacBio long…
In this webinar, the presenters describe a targeted sequencing workflow that combines Roche NimbleGen’s SeqCap EZ enrichment technology with PacBio’ SMRT Sequencing to provide a more comprehensive view of variants and haplotype information over multi-kilobase, contiguous regions. They demonstrate that 6 kb fragments can also be utilized to enrich for long fragments that extend beyond the targeted capture site and well into (and often across) the adjacent intronic regions. When combined with SMRT Sequencing, multi-kilobase genomic regions can be phased and variants, including complex structural variants, can be detected in exons, introns and intergenic regions.
Studying microbial genomics and infectious disease? Learn how the PacBio Sequel II System can help advance your research, with first-hand perspectives from scientists who are investigating SARS-CoV-2 and COVID-19. In this webinar, Melissa Laird-Smith (Mt. Sinai School of Medicine) discusses her work evaluating the impact of host immune restriction in health and disease with high resolution HLA typing. She is joined by Corey Watson (University of Louisville School of Medicine) who talks about overcoming complexity to elucidate the role of IGH haplotype diversity in antibody-mediated immunity. Hosted by Meredith Ashby, Director of Microbial Genomics at PacBio. Access additional PacBio resources…
Dysregulation of alpha-synuclein expression has been implicated in the pathogenesis of synucleinopathies, in particular Parkinsontextquoterights Disease (PD) and Dementia with Lewy bodies (DLB). Previous studies have shown that the alternatively spliced isoforms of the SNCA gene are differentially expressed in different parts of the brain for PD and DLB patients. Similarly, SNCA isoforms with skipped exons can have a functional impact on the protein domains. The large intronic region of the SNCA gene was also shown to harbor structural variants that affect transcriptional levels. Here we apply the first study of using long read sequencing with targeted capture of both…
Cell-free DNA (cfDNA) fragments in maternal plasma contain DNA damage and may negatively impact the sensitivity of noninvasive prenatal testing (NIPT). However, some of these DNA damages are potentially reparable. We aimed to recover these damaged cfDNA molecules using PreCR DNA repair mix.cfDNA was extracted from 20 maternal plasma samples and was repaired and sequenced by the Illumina platform. Size profiles and fetal DNA fraction changes of repaired samples were characterized. Targeted sequencing of chromosome Y sequences was used to enrich fetal cfDNA molecules following repair. Single-molecule real-time (SMRT) sequencing platform was employed to characterize long (>250 bp) cfDNA molecules. NIPT…
Combining high-throughput sequencing with targeted sequence capture has become an attractive tool to study specific genomic regions of interest. Most studies have so far focused on the exome using short-read technology. These approaches are not designed to capture intergenic regions needed to reconstruct genomic organization, including regulatory regions and gene synteny. Here, we demonstrate the power of combining targeted sequence capture with long-read sequencing technology for comparative genomic analyses of the haemoglobin (Hb) gene clusters across eight species separated by up to 70 million years. Guided by the reference genome assembly of the Atlantic cod (Gadus morhua) together with genome…
Symbiosis is a major force of evolutionary change, influencing virtually all aspects of biology, from population ecology and evolution to genomics and molecular/biochemical mechanisms of development and reproduction. A remarkable example is Wolbachia endobacteria, present in some parasitic nematodes and many arthropod species. Acquisition of genomic data from diverse Wolbachia clades will aid in the elucidation of the different symbiotic mechanisms(s). However, challenges of de novo assembly of Wolbachia genomes include the presence in the sample of host DNA: nematode/vertebrate or insect. We designed biotinylated probes to capture large fragments of Wolbachia DNA for sequencing using PacBio technology (LEFT-SEQ: Large…
The robust detection of structural variants in mammalian genomes remains a challenge. It is particularly difficult in the case of genetically unstable Chinese hamster ovary (CHO) cell lines with only draft genome assemblies available. We explore the potential of the CRISPR/Cas9 system for the targeted capture of genomic loci containing integrated vectors in CHO-K1-based cell lines followed by next generation sequencing (NGS), and compare it to popular target-enrichment sequencing methods and to whole genome sequencing (WGS). Three different CRISPR/Cas9-based techniques were evaluated; all of them allow for amplification-free enrichment of target genomic regions in the range from 5 to 60…
Birds are a group with immense availability of genomic resources, and hundreds of forthcoming genomes at the doorstep. We review recent developments in whole genome sequencing, phylogenomics, and comparative genomics of birds. Short read based genome assemblies are common, largely due to efforts of the Bird 10K genome project (B10K). Chromosome-level assemblies are expected to increase due to improved long-read sequencing. The available genomic data has enabled the reconstruction of the bird tree of life with increasing confidence and resolution, but challenges remain in the early splits of Neoaves due to their explosive diversification after the Cretaceous-Paleogene (K-Pg) event. Continued…