June 1, 2021  |  

Targeted SMRT Sequencing and phasing using Roche NimbleGen’s SeqCap EZ enrichment

As a cost-effective alternative to whole genome human sequencing, targeted sequencing of specific regions, such as exomes or panels of relevant genes, has become increasingly common. These methods typically include direct PCR amplification of the genomic DNA of interest, or the capture of these targets via probe-based hybridization. Commonly, these approaches are designed to amplify or capture exonic regions and thereby result in amplicons or fragments that are a few hundred base pairs in length, a length that is well-addressed with short-read sequencing technologies. These approaches typically provide very good coverage and can identify SNPs in the targeted region, but are unable to haplotype these variants. Here we describe a targeted sequencing workflow that combines Roche NimbleGen’s SeqCap EZ enrichment technology with Pacific Biosciences’ SMRT Sequencing to provide a more comprehensive view of variants and haplotype information over multi-kilobase regions. While the SeqCap EZ technology is typically used to capture 200 bp fragments, we demonstrate that 6 kb fragments can also be utilized to enrich for long fragments that extend beyond the targeted capture site and well into (and often across) the flanking intronic regions. When combined with the long reads of SMRT Sequencing, multi-kilobase regions of the human genome can be phased and variants detected in exons, introns and intergenic regions.


June 1, 2021  |  

Highly contiguous de novo human genome assembly and long-range haplotype phasing using SMRT Sequencing

The long reads, random error, and unbiased sampling of SMRT Sequencing enables high quality, de novo assembly of the human genome. PacBio long reads are capable of resolving genomic variations at all size scales, including SNPs, insertions, deletions, inversions, translocations, and repeat expansions, all of which are important in understanding the genetic basis for human disease and difficult to access via other technologies. In demonstration of this, we report a new high-quality, diploid aware de novo assembly of Craig Venter’s well-studied genome.


June 1, 2021  |  

Targeted sequencing of genes from soybean using NimbleGen SeqCap EZ and PacBio SMRT Sequencing

Full-length gene capture solutions offer opportunities to screen and characterize structural variations and genetic diversity to understand key traits in plants and animals. Through a combined Roche NimbleGen probe capture and SMRT Sequencing strategy, we demonstrate the capability to resolve complex gene structures often observed in plant defense and developmental genes spanning multiple kilobases. The custom panel includes members of the WRKY plant-defense-signaling family, members of the NB-LRR disease-resistance family, and developmental genes important for flowering. The presence of repetitive structures and low-complexity regions makes short-read sequencing of these genes difficult, yet this approach allows researchers to obtain complete sequences for unambiguous resolution of gene models. This strategy has been applied to genomic DNA samples from soybean coupled with barcoding for multiplexing.


June 1, 2021  |  

Highly contiguous de novo human genome assembly and long-range haplotype phasing using SMRT Sequencing

The long reads, random error, and unbiased sampling of SMRT Sequencing enables high quality, de novo assembly of the human genome. PacBio long reads are capable of resolving genomic variations at all size scales, including SNPs, insertions, deletions, inversions, translocations, and repeat expansions, all of which are both important in understanding the genetic basis for human disease, and difficult to access via other technologies. In demonstration of this, we report a new high-quality, diploid-aware de novo assembly of Craig Venter’s well-studied genome.


June 1, 2021  |  

Characterization of the Poly-T variants in the TOMM40 gene using PacBio long reads

Genes associated with several neurological disorders have been shown to be highly polymorphic. Targeted sequencing of these genes using NGS technologies is a powerful way to increase the cost-effectiveness of variant discovery and detection. However, for a comprehensive view of these target genes, it is necessary to have complete and uniform coverage across regions of interest. Unfortunately, short-read sequencing technologies are not ideal for these types of studies as they are prone to mis-mapping and often fail to span repetitive regions. Targeted sequencing with PacBio long reads provides the unique advantage of single-molecule observations of complex genomic regions. PacBio long reads not only provide continuous sequence data though polymorphic or repetitive regions, but also have no GC bias. Here we describe the characterization of the poly-T locus in TOMM40, a gene known to be associated with progression to Alzheimer’s, using PacBio long reads. Probes were designed to capture a 20 kb region comprising the TOMM40 and ApoE genes. Target regions were captured in multiple cell lines and sequencing libraries made using standard sample preparation methods. We will present our results on the poly-T structural variants that we observed in TOMM40 in these cell lines. We will also present our results on probe design optimization and barcoding strategies for a cost-effective solution.


April 21, 2020  |  

The landscape of SNCA transcripts across synucleinopathies: New insights from long reads sequencing analysis

Dysregulation of alpha-synuclein expression has been implicated in the pathogenesis of synucleinopathies, in particular Parkinsontextquoterights Disease (PD) and Dementia with Lewy bodies (DLB). Previous studies have shown that the alternatively spliced isoforms of the SNCA gene are differentially expressed in different parts of the brain for PD and DLB patients. Similarly, SNCA isoforms with skipped exons can have a functional impact on the protein domains. The large intronic region of the SNCA gene was also shown to harbor structural variants that affect transcriptional levels. Here we apply the first study of using long read sequencing with targeted capture of both the gDNA and cDNA of the SNCA gene in brain tissues of PD, DLB, and control samples using the PacBio Sequel system. The targeted full-length cDNA (Iso-Seq) data confirmed complex usage of known alternative start sites and variable 3textquoteright UTR lengths, as well as novel 5textquoteright starts and 3textquoteright ends not previously described. The targeted gDNA data allowed phasing of up to 81% of the ~114kb SNCA region, with the longest phased block excedding 54 kb. We demonstrate that long gDNA and cDNA reads have the potential to reveal long-range information not previously accessible using traditional sequencing methods. This approach has a potential impact in studying disease risk genes such as SNCA, providing new insights into the genetic etiologies, including perturbations to the landscape the gene transcripts, of human complex diseases such as synucleinopathies.


April 21, 2020  |  

Enrichment of fetal and maternal long cell-free DNA fragments from maternal plasma following DNA repair.

Cell-free DNA (cfDNA) fragments in maternal plasma contain DNA damage and may negatively impact the sensitivity of noninvasive prenatal testing (NIPT). However, some of these DNA damages are potentially reparable. We aimed to recover these damaged cfDNA molecules using PreCR DNA repair mix.cfDNA was extracted from 20 maternal plasma samples and was repaired and sequenced by the Illumina platform. Size profiles and fetal DNA fraction changes of repaired samples were characterized. Targeted sequencing of chromosome Y sequences was used to enrich fetal cfDNA molecules following repair. Single-molecule real-time (SMRT) sequencing platform was employed to characterize long (>250 bp) cfDNA molecules. NIPT of five trisomy 21 samples was performed.Size profiles of repaired libraries were altered, with significantly increased long (>250 bp) cfDNA molecules. Single nucleotide polymorphism (SNP)-based analyses showed that both fetal- and maternal-derived cfDNA molecules were enriched by the repair. Fetal DNA fractions in maternal plasma showed a small but consistent (4.8%) increase, which were contributed by a higher increment of long fetal cfDNA molecules. z-score values were improved in NIPT of all trisomy 21 samples.Plasma DNA repair recovers and enriches long cfDNA molecules of both fetal and maternal origins in maternal plasma. © 2018 John Wiley & Sons, Ltd.


April 21, 2020  |  

Long-read sequence capture of the haemoglobin gene clusters across codfish species.

Combining high-throughput sequencing with targeted sequence capture has become an attractive tool to study specific genomic regions of interest. Most studies have so far focused on the exome using short-read technology. These approaches are not designed to capture intergenic regions needed to reconstruct genomic organization, including regulatory regions and gene synteny. Here, we demonstrate the power of combining targeted sequence capture with long-read sequencing technology for comparative genomic analyses of the haemoglobin (Hb) gene clusters across eight species separated by up to 70 million years. Guided by the reference genome assembly of the Atlantic cod (Gadus morhua) together with genome information from draft assemblies of selected codfishes, we designed probes covering the two Hb gene clusters. Use of custom-made barcodes combined with PacBio RSII sequencing led to highly continuous assemblies of the LA (~100 kb) and MN (~200 kb) clusters, which include syntenic regions of coding and intergenic sequences. Our results revealed an overall conserved genomic organization of the Hb genes within this lineage, yet with several, lineage-specific gene duplications. Moreover, for some of the species examined, we identified amino acid substitutions at two sites in the Hbb1 gene as well as length polymorphisms in its regulatory region, which has previously been linked to temperature adaptation in Atlantic cod populations. This study highlights the use of targeted long-read capture as a versatile approach for comparative genomic studies by generation of a cross-species genomic resource elucidating the evolutionary history of the Hb gene family across the highly divergent group of codfishes. © 2018 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.


April 21, 2020  |  

Large Enriched Fragment Targeted Sequencing (LEFT-SEQ) Applied to Capture of Wolbachia Genomes.

Symbiosis is a major force of evolutionary change, influencing virtually all aspects of biology, from population ecology and evolution to genomics and molecular/biochemical mechanisms of development and reproduction. A remarkable example is Wolbachia endobacteria, present in some parasitic nematodes and many arthropod species. Acquisition of genomic data from diverse Wolbachia clades will aid in the elucidation of the different symbiotic mechanisms(s). However, challenges of de novo assembly of Wolbachia genomes include the presence in the sample of host DNA: nematode/vertebrate or insect. We designed biotinylated probes to capture large fragments of Wolbachia DNA for sequencing using PacBio technology (LEFT-SEQ: Large Enriched Fragment Targeted Sequencing). LEFT-SEQ was used to capture and sequence four Wolbachia genomes: the filarial nematode Brugia malayi, wBm, (21-fold enrichment), Drosophila mauritiana flies (2 isolates), wMau (11-fold enrichment), and Aedes albopictus mosquitoes, wAlbB (200-fold enrichment). LEFT-SEQ resulted in complete genomes for wBm and for wMau. For wBm, 18 single-nucleotide polymorphisms (SNPs), relative to the wBm reference, were identified and confirmed by PCR. A limit of LEFT-SEQ is illustrated by the wAlbB genome, characterized by a very high level of insertion sequences elements (ISs) and DNA repeats, for which only a 20-contig draft assembly was achieved.


April 21, 2020  |  

CRISPR/CAS9 targeted CAPTURE of mammalian genomic regions for characterization by NGS.

The robust detection of structural variants in mammalian genomes remains a challenge. It is particularly difficult in the case of genetically unstable Chinese hamster ovary (CHO) cell lines with only draft genome assemblies available. We explore the potential of the CRISPR/Cas9 system for the targeted capture of genomic loci containing integrated vectors in CHO-K1-based cell lines followed by next generation sequencing (NGS), and compare it to popular target-enrichment sequencing methods and to whole genome sequencing (WGS). Three different CRISPR/Cas9-based techniques were evaluated; all of them allow for amplification-free enrichment of target genomic regions in the range from 5 to 60 fold, and for recovery of ~15 kb-long sequences with no sequencing artifacts introduced. The utility of these protocols has been proven by the identification of transgene integration sites and flanking sequences in three CHO cell lines. The long enriched fragments helped to identify Escherichia coli genome sequences co-integrated with vectors, and were further characterized by Whole Genome Sequencing (WGS). Other advantages of CRISPR/Cas9-based methods are the ease of bioinformatics analysis, potential for multiplexing, and the production of long target templates for real-time sequencing.


April 21, 2020  |  

Comparative Phylogenomics, a Stepping Stone for Bird Biodiversity Studies

Birds are a group with immense availability of genomic resources, and hundreds of forthcoming genomes at the doorstep. We review recent developments in whole genome sequencing, phylogenomics, and comparative genomics of birds. Short read based genome assemblies are common, largely due to efforts of the Bird 10K genome project (B10K). Chromosome-level assemblies are expected to increase due to improved long-read sequencing. The available genomic data has enabled the reconstruction of the bird tree of life with increasing confidence and resolution, but challenges remain in the early splits of Neoaves due to their explosive diversification after the Cretaceous-Paleogene (K-Pg) event. Continued genomic sampling of the bird tree of life will not just better reflect their evolutionary history but also shine new light onto the organization of phylogenetic signal and conflict across the genome. The comparatively simple architecture of avian genomes makes them a powerful system to study the molecular foundation of bird specific traits. Birds are on the verge of becoming an extremely resourceful system to study biodiversity from the nucleotide up.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.