Menu
October 23, 2019  |  

Sites of retroviral DNA integration: From basic research to clinical applications.

One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with human immunodeficiency virus type 1 (HIV-1) can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review, we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or patients with acquired immune deficiency syndrome (AIDS) on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency.


October 23, 2019  |  

Structural determination of the broadly reactive anti-IGHV1-69 anti-idiotypic antibody G6 and its idiotope.

The heavy chain IGHV1-69 germline gene exhibits a high level of polymorphism and shows biased use in protective antibody (Ab) responses to infections and vaccines. It is also highly expressed in several B cell malignancies and autoimmune diseases. G6 is an anti-idiotypic monoclonal Ab that selectively binds to IGHV1-69 heavy chain germline gene 51p1 alleles that have been implicated in these Ab responses and disease processes. Here, we determine the co-crystal structure of humanized G6 (hG6.3) in complex with anti-influenza hemagglutinin stem-directed broadly neutralizing Ab D80. The core of the hG6.3 idiotope is a continuous string of CDR-H2 residues starting with M53 and ending with N58. G6 binding studies demonstrate the remarkable breadth of binding to 51p1 IGHV1-69 Abs with diverse CDR-H3, light chain, and antigen binding specificities. These studies detail the broad expression of the G6 cross-reactive idiotype (CRI) that further define its potential role in precision medicine. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.


October 23, 2019  |  

Transmission, evolution, and endogenization: Lessons learned from recent retroviral invasions.

Viruses of the subfamily Orthoretrovirinaeare defined by the ability to reverse transcribe an RNA genome into DNA that integrates into the host cell genome during the intracellular virus life cycle. Exogenous retroviruses (XRVs) are horizontally transmitted between host individuals, with disease outcome depending on interactions between the retrovirus and the host organism. When retroviruses infect germ line cells of the host, they may become endogenous retroviruses (ERVs), which are permanent elements in the host germ line that are subject to vertical transmission. These ERVs sometimes remain infectious and can themselves give rise to XRVs. This review integrates recent developments in the phylogenetic classification of retroviruses and the identification of retroviral receptors to elucidate the origins and evolution of XRVs and ERVs. We consider whether ERVs may recurrently pressure XRVs to shift receptor usage to sidestep ERV interference. We discuss how related retroviruses undergo alternative fates in different host lineages after endogenization, with koala retrovirus (KoRV) receiving notable interest as a recent invader of its host germ line. KoRV is heritable but also infectious, which provides insights into the early stages of germ line invasions as well as XRV generation from ERVs. The relationship of KoRV to primate and other retroviruses is placed in the context of host biogeography and the potential role of bats and rodents as vectors for interspecies viral transmission. Combining studies of extant XRVs and “fossil” endogenous retroviruses in koalas and other Australasian species has broadened our understanding of the evolution of retroviruses and host-retrovirus interactions. Copyright © 2017 American Society for Microbiology.


October 23, 2019  |  

Rapid CRISPR/Cas9-mediated cloning of full-length Epstein-Barr virus genomes from latently infected cells.

Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC) cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV) genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically.


October 23, 2019  |  

Bioengineered viral platform for intramuscular passive vaccine delivery to human skeletal muscle.

Skeletal muscle is ideal for passive vaccine administration as it is easily accessible by intramuscular injection. Recombinant adeno-associated virus (rAAV) vectors are in consideration for passive vaccination clinical trials for HIV and influenza. However, greater human skeletal muscle transduction is needed for therapeutic efficacy than is possible with existing serotypes. To bioengineer capsids with therapeutic levels of transduction, we utilized a directed evolution approach to screen libraries of shuffled AAV capsids in pools of surgically resected human skeletal muscle cells from five patients. Six rounds of evolution were performed in various muscle cell types, and evolved variants were validated against existing muscle-tropic serotypes rAAV1, 6, and 8. We found that evolved variants NP22 and NP66 had significantly increased primary human and rhesus skeletal muscle fiber transduction from surgical explants ex vivo and in various primary and immortalized myogenic lines in vitro. Importantly, we demonstrated reduced seroreactivity compared to existing serotypes against normal human serum from 50 adult donors. These capsids represent powerful tools for human skeletal muscle expression and secretion of antibodies from passive vaccines.


October 23, 2019  |  

Nuclease-mediated gene editing by homologous recombination of the human globin locus.

Tal-effector nucleases (TALENs) are engineered proteins that can stimulate precise genome editing through specific DNA double-strand breaks. Sickle cell disease and ß-thalassemia are common genetic disorders caused by mutations in ß-globin, and we engineered a pair of highly active TALENs that induce modification of 54% of human ß-globin alleles near the site of the sickle mutation. These TALENS stimulate targeted integration of therapeutic, full-length beta-globin cDNA to the endogenous ß-globin locus in 19% of cells prior to selection as quantified by single molecule real-time sequencing. We also developed highly active TALENs to human ?-globin, a pharmacologic target in sickle cell disease therapy. Using the ß-globin and ?-globin TALENs, we generated cell lines that express GFP under the control of the endogenous ß-globin promoter and tdTomato under the control of the endogenous ?-globin promoter. With these fluorescent reporter cell lines, we screened a library of small molecule compounds for their differential effect on the transcriptional activity of the endogenous ß- and ?-globin genes and identified several that preferentially upregulate ?-globin expression.


October 23, 2019  |  

Bioengineered AAV capsids with combined high human liver transduction in vivo and unique humoral seroreactivity.

Existing recombinant adeno-associated virus (rAAV) serotypes for delivering in vivo gene therapy treatments for human liver diseases have not yielded combined high-level human hepatocyte transduction and favorable humoral neutralization properties in diverse patient groups. Yet, these combined properties are important for therapeutic efficacy. To bioengineer capsids that exhibit both unique seroreactivity profiles and functionally transduce human hepatocytes at therapeutically relevant levels, we performed multiplexed sequential directed evolution screens using diverse capsid libraries in both primary human hepatocytes in vivo and with pooled human sera from thousands of patients. AAV libraries were subjected to five rounds of in vivo selection in xenografted mice with human livers to isolate an enriched human-hepatotropic library that was then used as input for a sequential on-bead screen against pooled human immunoglobulins. Evolved variants were vectorized and validated against existing hepatotropic serotypes. Two of the evolved AAV serotypes, NP40 and NP59, exhibited dramatically improved functional human hepatocyte transduction in vivo in xenografted mice with human livers, along with favorable human seroreactivity profiles, compared with existing serotypes. These novel capsids represent enhanced vector delivery systems for future human liver gene therapy applications. Copyright © 2017. Published by Elsevier Inc.


September 22, 2019  |  

Cow, yak, and camel milk diets differentially modulated the systemic immunity and fecal microbiota of rats

Cow milk is most widely consumed; however, non-cattle milk has gained increasing interest because of added nutritive values. We compared the health effects of yak, cow, and camel milk in rats. By measuring several plasma immune factors, significantly more interferon-? was detected in the camel than the yak (P=0.0020) or cow (P=0.0062) milk group. Significantly more IgM was detected in the yak milk than the control group (P=0.0071). The control group had significantly less interleukin 6 than the yak (P=0.0499) and cow (P=0.0248) milk groups. The fecal microbiota of the 144 samples comprised mainly of the Firmicutes (76.70±11.03%), Bacteroidetes (15.27±7.79%), Proteobacteria (3.61±4.34%), and Tenericutes (2.61±2.53%) phyla. Multivariate analyses revealed a mild shift in the fecal microbiota along the milk treatment. We further identified the differential microbes across the four groups. At day 14, 22 and 28 differential genera and species were identified (P=0.0000–0.0462), while 8 and 11 differential genera and species (P=0.0000–0.0013) were found at day 28. Some short-chain fatty acid and succinate producers increased, while certain health-concerned bacteria (Prevotella copri, Phascolarctobacterium faecium, and Bacteroides uniformis) decreased after 14days of yak or camel milk treatment. We demonstrated that different animal milk could confer distinctive nutritive value to the host.


September 22, 2019  |  

Transcriptional adaptations during long-term persistence of Staphylococcus aureus in the airways of a cystic fibrosis patient.

The lungs of Cystic fibrosis (CF) patients are often colonized and/or infected by Staphylococcus aureus for years, mostly by one predominant clone. For long-term survival in this environment, S. aureus needs to adapt during its interactions with host factors, antibiotics, and other pathogens. Here, we study long-term transcriptional as well as genomic adaptations of an isogenic pair of S. aureus isolates from a single patient using RNA sequencing (RNA-Seq) and whole genome sequencing (WGS). Mimicking in vivo conditions, we cultivated the S. aureus isolates using artificial sputum medium before harvesting RNA for subsequent analysis. We confirmed our RNA-Seq data using quantitative real-time (qRT)-PCR and additionally investigated intermediate isolates from the same patient representing in total 13.2 years of persistence in the CF airways. Comparative RNA-Seq analysis of the first and the last (“late”) isolate revealed significant differences in the late isolate after 13.2 years of persistence. Of the 2545 genes expressed in both isolates that were cultivated aerobically, 256 genes were up- and 161 were down-regulated with a minimum 2-fold change (2f). Focusing on 25 highly (=8f) up- (n=9) or down- (n=16) regulated genes, we identified several genes encoding for virulence factors involved in immune evasion, bacterial spread or secretion (e.g. spa, sak, and esxA). Moreover, these genes displayed similar expression trends under aerobic, microaerophilic and anaerobic conditions. Further qRT-PCR-experiments of highly up- or down-regulated genes within intermediate S. aureus isolates resulted in different gene expression patterns over the years. Using sequencing analysis of the differently expressed genes and their upstream regions in the late S. aureus isolate resulted in only few genomic alterations. Comparative transcriptomic analysis revealed adaptive changes affecting mainly genes involved in host-pathogen interaction. Although the underlying mechanisms were not known, our results suggest adaptive processes beyond genomic mutations triggered by local factors rather than by activation of global regulators. Copyright © 2014 The Authors. Published by Elsevier GmbH.. All rights reserved.


September 22, 2019  |  

HIV-1 infection of primary CD4(+) T cells regulates the expression of specific HERV-K (HML-2) elements.

Endogenous retroviruses (ERVs) occupy extensive regions of the human genome. Although many of these retroviral elements have lost their ability to replicate, those whose insertion took place more recently, such as the HML-2 group of HERV-K elements, still retain intact open reading frames and the capacity to produce certain viral RNA and/or proteins. Transcription of these ERVs is, however, tightly regulated by dedicated epigenetic control mechanisms. Nonetheless, it has been reported that some pathologic states, such as viral infections and certain cancers, coincide with ERV expression suggesting transcriptional reawakening is possible. HML-2 elements are reportedly induced during HIV-1 infection, but the conserved nature of these elements has, until recently, rendered their expression profiling problematic.Here, we provide comprehensive HERV-K HML-2 expression profiles specific for productively HIV-1 infected primary human CD4(+) T cells. We combined enrichment of HIV-1 infected cells using a reporter virus expressing a surface reporter for gentle and efficient purification with long-read Single Molecule Real-Time sequencing. We show that three HML-2 proviruses, 6q25.1, 8q24.3, and 19q13.42 are up-regulated on average between 3- and 5-fold in HIV-1 infected CD4(+) T cells. One provirus, HML-2 12q24.33, in contrast, was repressed in the presence of active HIV replication.In conclusion, this report identifies the HERV-K HML-2 loci whose expression profiles differ upon HIV-1 infection in primary human CD4(+) T cells. These data will help pave the way for further studies on the influence of endogenous retroviruses on HIV-1 replication.Importance Endogenous retroviruses inhabit big portions of our genome. And although they are mainly inert some of the evolutionarily younger members maintain the ability to express both RNA as well as proteins. We have developed an approach using long-read SMRT sequencing that produces long reads, that provides us with ability to obtain detailed and accurate HERV-K HML-2 expression profiles. We have now applied this approach to study HERV-K expression in the presence and absence of productive HIV-1 infection of primary human CD4(+) T cells. In addition to using SMRT sequencing, our strategy also includes the magnetic selection of the infected cells so that levels of background expression due to uninfected cells are kept at a minimum. The results in this manuscript provide the blueprint for in-depth studies of the interactions of the authentic upregulated HERV-K HML-2 elements and HIV-1. Copyright © 2017 American Society for Microbiology.


September 22, 2019  |  

neoantigenR: An annotation based pipeline for tumor neoantigen identification from sequencing data

Studies indicate that more than 90% of human genes are alternatively spliced, suggesting the complexity of the transcriptome assembly and analysis. The splicing process is often disrupted, resulting in both functional and non-functional end-products (Sveen et al. 2016) in many cancers. Harnessing the immune system to fight against malignant cancers carrying aberrantly mutated or spliced products is becoming a promising approach to cancer therapy. Advances in immune checkpoint blockade have elicited adaptive immune responses with promising clinical responses to treatments against human malignancies (Tumor Neoantigens in Personalized Cancer Immunotherapy 2017). Emerging data suggest that recognition of patient-specific mutation-associated cancer antigens (i.e. from alternative splicing isoforms) may allow scientists to dissect the immune response in the activity of clinical immunotherapies (Schumacher and Schreiber 2015). The advent of high-throughput sequencing technology has provided a comprehensive view of both splicing aberrations and somatic mutations across a range of human malignancies, allowing for a deeper understanding of the interplay of various disease mechanisms. Meanwhile, studies show that the number of transcript isoforms reported to date may be limited by the short-read sequencing due to the inherit limitation of transcriptome reconstruction algorithms, whereas long-read sequencing is able to significantly improve the detection of alternative splicing variants since there is no need to assemble full-length transcripts from short reads. The analysis of these high-throughput long-read sequencing data may permit a systematic view of tumor specific peptide epitopes (also known as neoantigens) that could serve as targets for immunotherapy (Tumor Neoantigens in Personalized Cancer Immunotherapy 2017). Currently, there is no software pipeline available that can efficiently produce mutation-associated cancer antigens from raw high-throughput sequencing data on patient tumor DNA (The Problem with Neoantigen Prediction 2017). In addressing this issue, we introduce a R package that allows the discoveries of peptide epitope candidates, which are the tumor-specific peptide fragments containing potential functional neoantigens. These peptide epitopes consist of structure variants including insertion, deletions, alternative sequences, and peptides from nonsynonymous mutations. Analysis of these precursor candidates with widely used tools such as netMHC allows for the accurate in-silico prediction of neoantigens. The pipeline named neoantigeR is currently hosted in https://github.com/ICBI/neoantigeR.


September 22, 2019  |  

Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.

PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II’s sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.


September 22, 2019  |  

The Epstein-Barr virus miR-BHRF1 microRNAs regulate viral gene expression in cis.

The Epstein-Barr virus (EBV) miR-BHRF1 microRNA (miRNA) cluster has been shown to facilitate B-cell transformation and promote the rapid growth of the resultant lymphoblastoid cell lines (LCLs). However, we find that expression of physiological levels of the miR-BHRF1 miRNAs in LCLs transformed with a miR-BHRF1 null mutant (?123) fails to increase their growth rate. We demonstrate that the pri-miR-BHRF1-2 and 1-3 stem-loops are present in the 3’UTR of transcripts encoding EBNA-LP and that excision of pre-miR-BHRF1-2 and 1-3 by Drosha destabilizes these mRNAs and reduces expression of the encoded protein. Therefore, mutational inactivation of pri-miR-BHRF1-2 and 1-3 in the ?123 mutant upregulates the expression of not only EBNA-LP but also EBNA-LP-regulated mRNAs and proteins, including LMP1. We hypothesize that this overexpression causes the reduced transformation capacity of the ?123 EBV mutant. Thus, in addition to regulating cellular mRNAs in trans, miR-BHRF1-2 and 1-3 also regulate EBNA-LP mRNA expression in cis. Copyright © 2017 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Dynamic regulation of HIV-1 mRNA populations analyzed by single-molecule enrichment and long-read sequencing.

Alternative RNA splicing greatly expands the repertoire of proteins encoded by genomes. Next-generation sequencing (NGS) is attractive for studying alternative splicing because of the efficiency and low cost per base, but short reads typical of NGS only report mRNA fragments containing one or few splice junctions. Here, we used single-molecule amplification and long-read sequencing to study the HIV-1 provirus, which is only 9700 bp in length, but encodes nine major proteins via alternative splicing. Our data showed that the clinical isolate HIV-1(89.6) produces at least 109 different spliced RNAs, including a previously unappreciated ~1 kb class of messages, two of which encode new proteins. HIV-1 message populations differed between cell types, longitudinally during infection, and among T cells from different human donors. These findings open a new window on a little studied aspect of HIV-1 replication, suggest therapeutic opportunities and provide advanced tools for the study of alternative splicing.


September 22, 2019  |  

Evolution of selective-sequencing approaches for virus discovery and virome analysis.

Recent advances in sequencing technologies have transformed the field of virus discovery and virome analysis. Once mostly confined to the traditional Sanger sequencing based individual virus discovery, is now entirely replaced by high throughput sequencing (HTS) based virus metagenomics that can be used to characterize the nature and composition of entire viromes. To better harness the potential of HTS for the study of viromes, sample preparation methodologies use different approaches to exclude amplification of non-viral components that can overshadow low-titer viruses. These virus-sequence enrichment approaches mostly focus on the sample preparation methods, like enzymatic digestion of non-viral nucleic acids and size exclusion of non-viral constituents by column filtration, ultrafiltration or density gradient centrifugation. However, recently a new approach of virus-sequence enrichment called virome-capture sequencing, focused on the amplification or HTS library preparation stage, was developed to increase the ability of virome characterization. This new approach has the potential to further transform the field of virus discovery and virome analysis, but its technical complexity and sequence-dependence warrants further improvements. In this review we discuss the different methods, their applications and evolution, for selective sequencing based virome analysis and also propose refinements needed to harness the full potential of HTS for virome analysis. Copyright © 2017 Elsevier B.V. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.