June 1, 2021  |  

Using whole exome sequencing and bacterial pathogen sequencing to investigate the genetic basis of pulmonary non-tuberculous mycobacterial infections.

Pulmonary non-tuberculous mycobacterial (PNTM) infections occur in patients with chronic lung disease, but also in a distinct group of elderly women without lung defects who share a common body morphology: tall and lean with scoliosis, pectus excavatum, and mitral valve prolapse. In order to characterize the human host susceptibility to PNTM, we performed whole exome sequencing (WES) of 44 individuals in extended families of patients with active PNTM as well as 55 additional unrelated individuals with PNTM. This unique collection of familial cohorts in PNTM represents an important opportunity for a high yield search for genes that regulate mucosal immunity. An average of 58 million 100bp paired-end Illumina reads per exome were generated and mapped to the hg19 reference genome. Following variant detection and classification, we identified 58,422 potentially high-impact SNPs, 97.3% of which were missense mutations. Segregating variants using the family pedigrees as well as comparisons to the unrelated individuals identified multiple potential variants associated with PNTM. Validations of these candidate variants in a larger PNTM cohort are underway. In addition to WES, we sequenced the genomes of 52 mycobacterial isolates, including 9 from these PNTM patients, to integrate host PNTM susceptibility with mycobacterial genotypes and gain insights into the key factors involved in this devastating disease. These genomes were sequenced using a combination of 454, Illumina, and PacBio platforms and assembled using multiple genome assemblers. The resulting genome sequences were used to identify mycobacterial genotypes associated with virulence, invasion, and drug resistance.


April 21, 2020  |  

Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease.

Neuronal intranuclear inclusion disease (NIID) is a progressive neurodegenerative disease that is characterized by eosinophilic hyaline intranuclear inclusions in neuronal and somatic cells. The wide range of clinical manifestations in NIID makes ante-mortem diagnosis difficult1-8, but skin biopsy enables its ante-mortem diagnosis9-12. The average onset age is 59.7 years among approximately 140 NIID cases consisting of mostly sporadic and several familial cases. By linkage mapping of a large NIID family with several affected members (Family 1), we identified a 58.1 Mb linked region at 1p22.1-q21.3 with a maximum logarithm of the odds score of 4.21. By long-read sequencing, we identified a GGC repeat expansion in the 5′ region of NOTCH2NLC (Notch 2 N-terminal like C) in all affected family members. Furthermore, we found similar expansions in 8 unrelated families with NIID and 40 sporadic NIID cases. We observed abnormal anti-sense transcripts in fibroblasts specifically from patients but not unaffected individuals. This work shows that repeat expansion in human-specific NOTCH2NLC, a gene that evolved by segmental duplication, causes a human disease.


April 21, 2020  |  

CRISPR/CAS9 targeted CAPTURE of mammalian genomic regions for characterization by NGS.

The robust detection of structural variants in mammalian genomes remains a challenge. It is particularly difficult in the case of genetically unstable Chinese hamster ovary (CHO) cell lines with only draft genome assemblies available. We explore the potential of the CRISPR/Cas9 system for the targeted capture of genomic loci containing integrated vectors in CHO-K1-based cell lines followed by next generation sequencing (NGS), and compare it to popular target-enrichment sequencing methods and to whole genome sequencing (WGS). Three different CRISPR/Cas9-based techniques were evaluated; all of them allow for amplification-free enrichment of target genomic regions in the range from 5 to 60 fold, and for recovery of ~15 kb-long sequences with no sequencing artifacts introduced. The utility of these protocols has been proven by the identification of transgene integration sites and flanking sequences in three CHO cell lines. The long enriched fragments helped to identify Escherichia coli genome sequences co-integrated with vectors, and were further characterized by Whole Genome Sequencing (WGS). Other advantages of CRISPR/Cas9-based methods are the ease of bioinformatics analysis, potential for multiplexing, and the production of long target templates for real-time sequencing.


April 21, 2020  |  

Deep convolutional neural networks for accurate somatic mutation detection.

Accurate detection of somatic mutations is still a challenge in cancer analysis. Here we present NeuSomatic, the first convolutional neural network approach for somatic mutation detection, which significantly outperforms previous methods on different sequencing platforms, sequencing strategies, and tumor purities. NeuSomatic summarizes sequence alignments into small matrices and incorporates more than a hundred features to capture mutation signals effectively. It can be used universally as a stand-alone somatic mutation detection method or with an ensemble of existing methods to achieve the highest accuracy.


September 22, 2019  |  

Androgen receptor variant AR-V9 is co-expressed with AR-V7 in prostate cancer metastases and predicts abiraterone resistance.

Purpose: Androgen receptor (AR) variant AR-V7 is a ligand-independent transcription factor that promotes prostate cancer resistance to AR-targeted therapies.  Accordingly, efforts are underway to develop strategies for monitoring and inhibiting AR-V7 in castration-resistant prostate cancer (CRPC).  The purpose of this study was to understand whether other AR variants may be co-expressed with AR-V7 and promote resistance to AR-targeted therapies. Experimental Design:  We utilized complementary short- and long-read sequencing of intact AR mRNA isoforms to characterize AR expression in CRPC models.  Co-expression of AR-V7 and AR-V9 mRNA in CRPC metastases and circulating tumor cells was assessed by RNA-seq and RT-PCR, respectively.  Expression of AR-V9 protein in CRPC models was evaluated with polyclonal antisera.  Multivariate analysis was performed to test whether AR variant mRNA expression in metastatic tissues was associated with a 12-week progression-free survival endpoint in a prospective clinical trial of 78 CRPC-stage patients initiating therapy with the androgen synthesis inhibitor, abiraterone acetate. Results: AR-V9 was frequently co-expressed with AR-V7.  Both AR variant species were found to share a common 3′ terminal cryptic exon, which rendered AR-V9 susceptible to experimental manipulations that were previously-thought to target AR-V7 uniquely.  AR-V9 promoted ligand-independent growth of prostate cancer cells.  High AR-V9 mRNA expression in CRPC metastases was predictive of primary resistance to abiraterone acetate (HR = 4.0, 95% CI = 1.31-12.2, P = 0.02).   Conclusions:  AR-V9 may be an important component of therapeutic resistance in CRPC. Copyright ©2017, American Association for Cancer Research.


September 22, 2019  |  

Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations.

We analyzed transcriptomes (n = 211), whole exomes (n = 99) and targeted exomes (n = 103) from 216 malignant pleural mesothelioma (MPM) tumors. Using RNA-seq data, we identified four distinct molecular subtypes: sarcomatoid, epithelioid, biphasic-epithelioid (biphasic-E) and biphasic-sarcomatoid (biphasic-S). Through exome analysis, we found BAP1, NF2, TP53, SETD2, DDX3X, ULK2, RYR2, CFAP45, SETDB1 and DDX51 to be significantly mutated (q-score = 0.8) in MPMs. We identified recurrent mutations in several genes, including SF3B1 (~2%; 4/216) and TRAF7 (~2%; 5/216). SF3B1-mutant samples showed a splicing profile distinct from that of wild-type tumors. TRAF7 alterations occurred primarily in the WD40 domain and were, except in one case, mutually exclusive with NF2 alterations. We found recurrent gene fusions and splice alterations to be frequent mechanisms for inactivation of NF2, BAP1 and SETD2. Through integrated analyses, we identified alterations in Hippo, mTOR, histone methylation, RNA helicase and p53 signaling pathways in MPMs.


September 22, 2019  |  

G&T-seq: parallel sequencing of single-cell genomes and transcriptomes.

The simultaneous sequencing of a single cell’s genome and transcriptome offers a powerful means to dissect genetic variation and its effect on gene expression. Here we describe G&T-seq, a method for separating and sequencing genomic DNA and full-length mRNA from single cells. By applying G&T-seq to over 220 single cells from mice and humans, we discovered cellular properties that could not be inferred from DNA or RNA sequencing alone.


September 22, 2019  |  

Somatic APP gene recombination in Alzheimer’s disease and normal neurons.

The diversity and complexity of the human brain are widely assumed to be encoded within a constant genome. Somatic gene recombination, which changes germline DNA sequences to increase molecular diversity, could theoretically alter this code but has not been documented in the brain, to our knowledge. Here we describe recombination of the Alzheimer’s disease-related gene APP, which encodes amyloid precursor protein, in human neurons, occurring mosaically as thousands of variant ‘genomic cDNAs’ (gencDNAs). gencDNAs lacked introns and ranged from full-length cDNA copies of expressed, brain-specific RNA splice variants to myriad smaller forms that contained intra-exonic junctions, insertions, deletions, and/or single nucleotide variations. DNA in situ hybridization identified gencDNAs within single neurons that were distinct from wild-type loci and absent from non-neuronal cells. Mechanistic studies supported neuronal ‘retro-insertion’ of RNA to produce gencDNAs; this process involved transcription, DNA breaks, reverse transcriptase activity, and age. Neurons from individuals with sporadic Alzheimer’s disease showed increased gencDNA diversity, including eleven mutations known to be associated with familial Alzheimer’s disease that were absent from healthy neurons. Neuronal gene recombination may allow ‘recording’ of neural activity for selective ‘playback’ of preferred gene variants whose expression bypasses splicing; this has implications for cellular diversity, learning and memory, plasticity, and diseases of the human brain.


September 22, 2019  |  

Emergence, retention and selection: A trilogy of origination for functional de novo proteins from ancestral lncRNAs in primates.

While some human-specific protein-coding genes have been proposed to originate from ancestral lncRNAs, the transition process remains poorly understood. Here we identified 64 hominoid-specific de novo genes and report a mechanism for the origination of functional de novo proteins from ancestral lncRNAs with precise splicing structures and specific tissue expression profiles. Whole-genome sequencing of dozens of rhesus macaque animals revealed that these lncRNAs are generally not more selectively constrained than other lncRNA loci. The existence of these newly-originated de novo proteins is also not beyond anticipation under neutral expectation, as they generally have longer theoretical lifespan than their current age, due to their GC-rich sequence property enabling stable ORFs with lower chance of non-sense mutations. Interestingly, although the emergence and retention of these de novo genes are likely driven by neutral forces, population genetics study in 67 human individuals and 82 macaque animals revealed signatures of purifying selection on these genes specifically in human population, indicating a proportion of these newly-originated proteins are already functional in human. We thus propose a mechanism for creation of functional de novo proteins from ancestral lncRNAs during the primate evolution, which may contribute to human-specific genetic novelties by taking advantage of existed genomic contexts.


September 22, 2019  |  

Accurate characterization of the IFITM locus using MiSeq and PacBio sequencing shows genetic variation in Galliformes.

Interferon inducible transmembrane (IFITM) proteins are effectors of the immune system widely characterized for their role in restricting infection by diverse enveloped and non-enveloped viruses. The chicken IFITM (chIFITM) genes are clustered on chromosome 5 and to date four genes have been annotated, namely chIFITM1, chIFITM3, chIFITM5 and chIFITM10. However, due to poor assembly of this locus in the Gallus Gallus v4 genome, accurate characterization has so far proven problematic. Recently, a new chicken reference genome assembly Gallus Gallus v5 was generated using Sanger, 454, Illumina and PacBio sequencing technologies identifying considerable differences in the chIFITM locus over the previous genome releases.We re-sequenced the locus using both Illumina MiSeq and PacBio RS II sequencing technologies and we mapped RNA-seq data from the European Nucleotide Archive (ENA) to this finalized chIFITM locus. Using SureSelect probes capture probes designed to the finalized chIFITM locus, we sequenced the locus of a different chicken breed, namely a White Leghorn, and a turkey.We confirmed the Gallus Gallus v5 consensus except for two insertions of 5 and 1 base pair within the chIFITM3 and B4GALNT4 genes, respectively, and a single base pair deletion within the B4GALNT4 gene. The pull down revealed a single amino acid substitution of A63V in the CIL domain of IFITM2 compared to Red Jungle fowl and 13, 13 and 11 differences between IFITM1, 2 and 3 of chickens and turkeys, respectively. RNA-seq shows chIFITM2 and chIFITM3 expression in numerous tissue types of different chicken breeds and avian cell lines, while the expression of the putative chIFITM1 is limited to the testis, caecum and ileum tissues.Locus resequencing using these capture probes and RNA-seq based expression analysis will allow the further characterization of genetic diversity within Galliformes.


September 22, 2019  |  

Simulating the dynamics of targeted capture sequencing with CapSim.

Targeted sequencing using capture probes has become increasingly popular in clinical applications due to its scalability and cost-effectiveness. The approach also allows for higher sequencing coverage of the targeted regions resulting in better analysis statistical power. However, because of the dynamics of the hybridization process, it is difficult to evaluate the efficiency of the probe design prior to the experiments which are time consuming and costly.We developed CapSim, a software package for simulation of targeted sequencing. Given a genome sequence and a set of probes, CapSim simulates the fragmentation, the dynamics of probe hybridization and the sequencing of the captured fragments on Illumina and PacBio sequencing platforms. The simulated data can be used for evaluating the performance of the analysis pipeline, as well as the efficiency of the probe design. Parameters of the various stages in the sequencing process can also be evaluated in order to optimize the experiments.CapSim is publicly available under BSD license at https://github.com/Devika1/capsim.l.coin@imb.uq.edu.au.Supplementary data are available at Bioinformatics online.© The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com


September 22, 2019  |  

IMSindel: An accurate intermediate-size indel detection tool incorporating de novo assembly and gapped global-local alignment with split read analysis.

Insertions and deletions (indels) have been implicated in dozens of human diseases through the radical alteration of gene function by short frameshift indels as well as long indels. However, the accurate detection of these indels from next-generation sequencing data is still challenging. This is particularly true for intermediate-size indels (=50?bp), due to the short DNA sequencing reads. Here, we developed a new method that predicts intermediate-size indels using BWA soft-clipped fragments (unmatched fragments in partially mapped reads) and unmapped reads. We report the performance comparison of our method, GATK, PINDEL and ScanIndel, using whole exome sequencing data from the same samples. False positive and false negative counts were determined through Sanger sequencing of all predicted indels across these four methods. The harmonic mean of the recall and precision, F-measure, was used to measure the performance of each method. Our method achieved the highest F-measure of 0.84 in one sample, compared to 0.56 for GATK, 0.52 for PINDEL and 0.46 for ScanIndel. Similar results were obtained in additional samples, demonstrating that our method was superior to the other methods for detecting intermediate-size indels. We believe that this methodology will contribute to the discovery of intermediate-size indels associated with human disease.


September 22, 2019  |  

Repeated inversions within a pannier intron drive diversification of intraspecific colour patterns of ladybird beetles.

How genetic information is modified to generate phenotypic variation within a species is one of the central questions in evolutionary biology. Here we focus on the striking intraspecific diversity of >200 aposematic elytral (forewing) colour patterns of the multicoloured Asian ladybird beetle, Harmonia axyridis, which is regulated by a tightly linked genetic locus h. Our loss-of-function analyses, genetic association studies, de novo genome assemblies, and gene expression data reveal that the GATA transcription factor gene pannier is the major regulatory gene located at the h locus, and suggest that repeated inversions and cis-regulatory modifications at pannier led to the expansion of colour pattern variation in H. axyridis. Moreover, we show that the colour-patterning function of pannier is conserved in the seven-spotted ladybird beetle, Coccinella septempunctata, suggesting that H. axyridis’ extraordinary intraspecific variation may have arisen from ancient modifications in conserved elytral colour-patterning mechanisms in ladybird beetles.


September 22, 2019  |  

Diagnostic and Therapeutic Strategies for Fluoropyrimidine Treatment of Patients Carrying Multiple DPYD Variants.

DPYD genotyping prior to fluoropyrimidine treatment is increasingly implemented in clinical care. Without phasing information (i.e., allelic location of variants), current genotype-based dosing guidelines cannot be applied to patients carrying multiple DPYD variants. The primary aim of this study is to examine diagnostic and therapeutic strategies for fluoropyrimidine treatment of patients carrying multiple DPYD variants. A case series of patients carrying multiple DPYD variants is presented. Different genotyping techniques were used to determine phasing information. Phenotyping was performed by dihydropyrimidine dehydrogenase (DPD) enzyme activity measurements. Publicly available databases were queried to explore the frequency and phasing of variants of patients carrying multiple DPYD variants. Four out of seven patients carrying multiple DPYD variants received a full dose of fluoropyrimidines and experienced severe toxicity. Phasing information could be retrieved for four patients. In three patients, variants were located on two different alleles, i.e., in trans. Recommended dose reductions based on the phased genotype differed from the phenotype-derived dose reductions in three out of four cases. Data from publicly available databases show that the frequency of patients carrying multiple DPYD variants is low (< 0.2%), but higher than the frequency of the commonly tested DPYD*13 variant (0.1%). Patients carrying multiple DPYD variants are at high risk of developing severe toxicity. Additional analyses are required to determine the correct dose of fluoropyrimidine treatment. In patients carrying multiple DPYD variants, we recommend that a DPD phenotyping assay be carried out to determine a safe starting dose.


September 21, 2019  |  

Identification of a novel RASD1 somatic mutation in a USP8-mutated corticotroph adenoma.

Cushing’s disease (CD) is caused by pituitary corticotroph adenomas that secrete excess adrenocorticotropic hormone (ACTH). In these tumors, somatic mutations in the gene USP8 have been identified as recurrent and pathogenic and are the sole known molecular driver for CD. Although other somatic mutations were reported in these studies, their contribution to the pathogenesis of CD remains unexplored. No molecular drivers have been established for a large proportion of CD cases and tumor heterogeneity has not yet been investigated using genomics methods. Also, even in USP8-mutant tumors, a possibility may exist of additional contributing mutations, following a paradigm from other neoplasm types where multiple somatic alterations contribute to neoplastic transformation. The current study utilizes whole-exome discovery sequencing on the Illumina platform, followed by targeted amplicon-validation sequencing on the Pacific Biosciences platform, to interrogate the somatic mutation landscape in a corticotroph adenoma resected from a CD patient. In this USP8-mutated tumor, we identified an interesting somatic mutation in the gene RASD1, which is a component of the corticotropin-releasing hormone receptor signaling system. This finding may provide insight into a novel mechanism involving loss of feedback control to the corticotropin-releasing hormone receptor and subsequent deregulation of ACTH production in corticotroph tumors.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.