Menu
July 7, 2019  |  

Isolation of a novel ‘atypical’ Brucella strain from a bluespotted ribbontail ray (Taeniura lymma).

A pleomorphic Gram-negative, motile coccobacillus was isolated from the gills of a wild-caught bluespotted ribbontail ray after its sudden death during quarantine. Strain 141012304 was observed to grow aerobically, to be clearly positive for cytochrome oxidase, catalase, urease and was initially identified as “Brucella melitensis” or “Ochrobactrum anthropi” by Matrix-assisted laser desorption/ionization-time of flight mass spectrometry and VITEK2-compact(®), respectively. Affiliation to the genus Brucella was confirmed by bcsp31 and IS711 PCR as well as by Brucella species-specific multiplex PCR, therein displaying a characteristic banding pattern recently described for Brucella strains obtained from amphibian hosts. Likewise, based on recA sequencing, strain 141012304 was found to form a separate lineage, within the so called ‘atypical’ Brucella, consisting of genetically more distantly related strains. The closest similarity was detected to brucellae, which have recently been isolated from edible bull frogs. Subsequent next generation genome sequencing and phylogenetic analysis confirmed that the ray strain represents a novel Brucella lineage within the atypical group of Brucella and in vicinity to Brucella inopinata and Brucella strain BO2, both isolated from human patients. This is the first report of a natural Brucella infection in a saltwater fish extending the host range of this medically important genus.


July 7, 2019  |  

Novel urease-negative Helicobacter sp. ‘H. enhydrae sp. nov.’ isolated from inflamed gastric tissue of southern sea otters.

A total of 31 sea otters Enhydra lutris nereis found dead or moribund (and then euthanized) were necropsied in California, USA. Stomach biopsies were collected and transected with equal portions frozen or placed in formalin and analyzed histologically and screened for Helicobacter spp. in gastric tissue. Helicobacter spp. were isolated from 9 sea otters (29%); 58% (18 of 31) animals were positive for helicobacter by PCR. The Helicobacter sp. was catalase- and oxidase-positive and urease-negative. By electron microscopy, the Helicobacter sp. had lateral and polar sheathed flagella and had a slightly curved rod morphology. 16S and 23S rRNA sequence analyses of all ‘H. enhydrae’ isolates had similar sequences, which clustered as a novel Helicobacter sp. closely related to H. mustelae (96-97%). The genome sequence of isolate MIT 01-6242 was assembled into a single ~1.6 Mb long contig with a 40.8% G+C content. The annotated genome contained 1699 protein-coding sequences and 43 RNAs, including 65 genes homologous to known Helicobacter spp. and Campylobacter spp. virulence factors. Histological changes in the gastric tissues extended from mild cystic degeneration of gastric glands to severe mucosal erosions and ulcers. Silver stains of infected tissues demonstrated slightly curved bacterial rods at the periphery of the gastric ulcers and on the epithelial surface of glands. The underlying mucosa and submucosa were infiltrated by low numbers of neutrophils, macrophages, and lymphocytes, with occasional lymphoid aggregates and well-defined lymphoid follicles. This is the second novel Helicobacter sp., which we have named ‘H. enhydrae’, isolated from inflamed stomachs of mustelids, the first being H. mustelae from a ferret.


July 7, 2019  |  

Phase-variable methylation and epigenetic regulation by type I restriction-modification systems.

Epigenetic modifications in bacteria, such as DNA methylation, have been shown to affect gene regulation, thereby generating cells that are isogenic but with distinctly different phenotypes. Restriction-modification (RM) systems contain prototypic methylases that are responsible for much of bacterial DNA methylation. This review focuses on a distinctive group of type I RM loci that , through phase variation, can modify their methylation target specificity and can thereby switch bacteria between alternative patterns of DNA methylation. Phase variation occurs at the level of the target recognition domains of the hsdS (specificity) gene via reversible recombination processes acting upon multiple hsdS alleles. We describe the global distribution of such loci throughout the prokaryotic kingdom and highlight the differences in loci structure across the various bacterial species. Although RM systems are often considered simply as an evolutionary response to bacteriophages, these multi-hsdS type I systems have also shown the capacity to change bacterial phenotypes. The ability of these RM systems to allow bacteria to reversibly switch between different physiological states, combined with the existence of such loci across many species of medical and industrial importance, highlights the potential of phase-variable DNA methylation to act as a global regulatory mechanism in bacteria.© FEMS 2017.


July 7, 2019  |  

Complete genome sequence of a commensal bacterium, Hafnia alvei CBA7124, isolated from human feces.

Members of the genus Hafnia have been isolated from the feces of mammals, birds, reptiles, and fish, as well as from soil, water, sewage, and foods. Hafnia alvei is an opportunistic pathogen that has been implicated in intestinal and extraintestinal infections in humans. However, its pathogenicity is still unclear. In this study, we isolated H. alvei from human feces and performed sequencing as well as comparative genomic analysis to better understand its pathogenicity.The genome of H. alvei CBA7124 comprised a single circular chromosome with 4,585,298 bp and a GC content of 48.8%. The genome contained 25 rRNA genes (9 5S rRNA genes, 8 16S rRNA genes, and 8 23S rRNA genes), 88 tRNA genes, and 4043 protein-coding genes. Using comparative genomic analysis, the genome of this strain was found to have 72 strain-specific singletons. The genome also contained genes for antibiotic and antimicrobial resistance, as well as toxin-antitoxin systems.We revealed the complete genome sequence of the opportunistic gut pathogen, H. alvei CBA7124. We also performed comparative genomic analysis of the sequences in the genome of H. alvei CBA7124, and found that it contained strain-specific singletons, antibiotic resistance genes, and toxin-antitoxin systems. These results could improve our understanding of the pathogenicity and the mechanism behind the antibiotic resistance of H. alvei strains.


July 7, 2019  |  

Novel multiresistance cfr plasmids in linezolid-resistant methicillin-resistant Staphylococcus epidermidis and vancomycin-resistant Enterococcus faecium (VRE) from a hospital outbreak: co-location of cfr and optrA in VRE.

Linezolid is often the drug of last resort to treat infections caused by Gram-positive cocci. Linezolid resistance can be mutational (23S rRNA or L-protein) or, less commonly, acquired [predominantly cfr, conferring resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins and streptogramin A compounds (PhLOPSA) or optrA, encoding oxazolidinone and phenicol resistance].To investigate the clonality and genetic basis of linezolid resistance in 13 linezolid-resistant (LZDR) methicillin-resistant Staphylococcus epidermidis (MRSE) isolates recovered during a 2013/14 outbreak in an ICU in an Irish hospital and an LZDR vancomycin-resistant Enterococcus faecium (VRE) isolate from an LZDR-MRSE-positive patient.All isolates underwent PhLOPSA susceptibility testing, 23S rRNA sequencing, DNA microarray profiling and WGS.All isolates exhibited the PhLOPSA phenotype. The VRE harboured cfr and optrA on a novel 73?kb plasmid (pEF12-0805) also encoding erm(A), erm(B), lnu(B), lnu(E), aphA3 and aadE. One MRSE (M13/0451, from the same patient as the VRE) harboured cfr on a novel 8.5?kb plasmid (pSEM13-0451). The remaining 12 MRSE lacked cfr but exhibited linezolid resistance-associated mutations and were closely related to (1-52 SNPs) but distinct from M13/0451 (202-223 SNPs).Using WGS, novel and distinct cfr and cfr/optrA plasmids were identified in an MRSE and VRE isolate, respectively, as well as a cfr-negative LZDR-MRSE ICU outbreak and a distinct cfr-positive LZDR-MRSE from the same ICU. To our knowledge, this is the first report of cfr and optrA on a single VRE plasmid. Ongoing surveillance of linezolid resistance is essential to maintain its therapeutic efficacy.© The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.


July 7, 2019  |  

Complete genome analysis of Lactobacillus fermentum SK152 from kimchi reveals genes associated with its antimicrobial activity.

Research findings on probiotics highlight their importance in repressing harmful bacteria, leading to more extensive research on their potential applications. We analysed the genome of Lactobacillus fermentum SK152, which was isolated from the Korean traditional fermented vegetable dish kimchi, to determine the genetic makeup and genetic factors responsible for the antimicrobial activity of L. fermentum SK152 and performed a comparative genome analysis with other L. fermentum strains. The genome of L. fermentum SK152 was found to comprise a complete circular chromosome of 2092 273 bp, with an estimated GC content of 51.9% and 2184 open reading frames. It consisted of 2038 protein-coding genes and 73 RNA-coding genes. Moreover, a gene encoding a putative endolysin was found. A comparative genome analysis with other L. fermentum strains showed that SK152 is closely related to L. fermentum 3872 and F-6. An evolutionary analysis identified five positively selected genes that encode proteins associated with transport, survival and stress resistance. These positively selected genes may be essential for L. fermentum to colonise and survive in the stringent environment of the human gut and exert its beneficial effects. Our findings highlight the potential benefits of SK152.© FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Genome architecture and evolution of a unichromosomal asexual nematode.

Asexual reproduction in animals, though rare, is the main or exclusive mode of reproduction in some long-lived lineages. The longevity of asexual clades may be correlated with the maintenance of heterozygosity by mechanisms that rearrange genomes and reduce recombination. Asexual species thus provide an opportunity to gain insight into the relationship between molecular changes, genome architecture, and cellular processes. Here we report the genome sequence of the parthenogenetic nematode Diploscapter pachys with only one chromosome pair. We show that this unichromosomal architecture is shared by a long-lived clade of asexual nematodes closely related to the genetic model organism Caenorhabditis elegans. Analysis of the genome assembly reveals that the unitary chromosome arose through fusion of six ancestral chromosomes, with extensive rearrangement among neighboring regions. Typical nematode telomeres and telomeric protection-encoding genes are lacking. Most regions show significant heterozygosity; homozygosity is largely concentrated to one region and attributed to gene conversion. Cell-biological and molecular evidence is consistent with the absence of key features of meiosis I, including synapsis and recombination. We propose that D. pachys preserves heterozygosity and produces diploid embryos without fertilization through a truncated meiosis. As a prelude to functional studies, we demonstrate that D. pachys is amenable to experimental manipulation by RNA interference. Copyright © 2017 Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Gene acquisition by a distinct phyletic group within Streptococcus pneumoniae promotes adhesion to the ocular epithelium.

Streptococcus pneumoniae (pneumococcus) displays broad tissue tropism and infects multiple body sites in the human host. However, infections of the conjunctiva are limited to strains within a distinct phyletic group with multilocus sequence types ST448, ST344, ST1186, ST1270, and ST2315. In this study, we sequenced the genomes of six pneumococcal strains isolated from eye infections. The conjunctivitis isolates are grouped in a distinct phyletic group together with a subset of nasopharyngeal isolates. The keratitis (infection of the cornea) and endophthalmitis (infection of the vitreous body) isolates are grouped with the remainder of pneumococcal strains. Phenotypic characterization is consistent with morphological differences associated with the distinct phyletic group. Specifically, isolates from the distinct phyletic group form aggregates in planktonic cultures and chain-like structures in biofilms grown on abiotic surfaces. To begin to investigate the association between genotype and epidemiology, we focused on a predicted surface-exposed adhesin (SspB) encoded exclusively by this distinct phyletic group. Phylogenetic analysis of the gene encoding SspB in the context of a streptococcal species tree suggests that sspB was acquired by lateral gene transfer from Streptococcus suis. Furthermore, an sspB deletion mutant displays decreased adherence to cultured cells from the ocular epithelium compared to the isogenic wild-type and complemented strains. Together these findings suggest that acquisition of genes from outside the species has contributed to pneumococcal tissue tropism by enhancing the ability of a subset of strains to infect the ocular epithelium causing conjunctivitis. IMPORTANCE Changes in the gene content of pathogens can modify their ability to colonize and/or survive in different body sites in the human host. In this study, we investigate a gene acquisition event and its role in the pathogenesis of Streptococccus pneumoniae (pneumococcus). Our findings suggest that the gene encoding the predicted surface protein SspB has been transferred from Streptococcus suis (a distantly related streptococcal species) into a distinct set of pneumococcal strains. This group of strains distinguishes itself from the remainder of pneumococcal strains by extensive differences in genomic composition and by the ability to cause conjunctivitis. We find that the presence of sspB increases adherence of pneumococcus to the ocular epithelium. Thus, our data support the hypothesis that a subset of pneumococcal strains has gained genes from neighboring species that enhance their ability to colonize the epithelium of the eye, thus expanding into a new niche.


July 7, 2019  |  

Genomic comparison between Staphylococcus aureus GN strains clinically isolated from a familial infection case: IS1272 transposition through a novel inverted repeat-replacing mechanism.

A bacterial insertion sequence (IS) is a mobile DNA sequence carrying only the transposase gene (tnp) that acts as a mutator to disrupt genes, alter gene expressions, and cause genomic rearrangements. “Canonical” ISs have historically been characterized by their terminal inverted repeats (IRs), which may form a stem-loop structure, and duplications of a short (non-IR) target sequence at both ends, called target site duplications (TSDs). The IS distributions and virulence potentials of Staphylococcus aureus genomes in familial infection cases are unclear. Here, we determined the complete circular genome sequences of familial strains from a Panton-Valentine leukocidin (PVL)-positive ST50/agr4 S. aureus (GN) infection of a 4-year old boy with skin abscesses. The genomes of the patient strain (GN1) and parent strain (GN3) were rich for “canonical” IS1272 with terminal IRs, both having 13 commonly-existing copies (ce-IS1272). Moreover, GN1 had a newly-inserted IS1272 (ni-IS1272) on the PVL-converting prophage, while GN3 had two copies of ni-IS1272 within the DNA helicase gene and near rot. The GN3 genome also had a small deletion. The targets of ni-IS1272 transposition were IR structures, in contrast with previous “canonical” ISs. There were no TSDs. Based on a database search, the targets for ce-IS1272 were IRs or “non-IRs”. IS1272 included a larger structure with tandem duplications of the left (IRL) side sequence; tnp included minor cases of a long fusion form and truncated form. One ce-IS1272 was associated with the segments responsible for immune evasion and drug resistance. Regarding virulence, GN1 expressed cytolytic peptides (phenol-soluble modulin a and d-hemolysin) and PVL more strongly than some other familial strains. These results suggest that IS1272 transposes through an IR-replacing mechanism, with an irreversible process unlike that of “canonical” transpositions, resulting in genomic variations, and that, among the familial strains, the patient strain has strong virulence potential based on community-associated virulence factors.


July 7, 2019  |  

ICESag37, a novel integrative and conjugative element carrying antimicrobial resistance genes and potential virulence factors in Streptococcus agalactiae.

ICESag37, a novel integrative and conjugative element carrying multidrug resistance and potential virulence factors, was characterized in a clinical isolate of Streptococcus agalactiae. Two clinical strains of S. agalactiae, Sag37 and Sag158, were isolated from blood samples of new-borns with bacteremia. Sag37 was highly resistant to erythromycin and tetracycline, and susceptible to levofloxacin and penicillin, while Sag158 was resistant to tetracycline and levofloxacin, and susceptible to erythromycin. Transfer experiments were performed and selection was carried out with suitable antibiotic concentrations. Through mating experiments, the erythromycin resistance gene was found to be transferable from Sag37 to Sag158. SmaI-PFGE revealed a new SmaI fragment, confirming the transfer of the fragment containing the erythromycin resistance gene. Whole genome sequencing and sequence analysis revealed a mobile element, ICESag37, which was characterized using several molecular methods and in silico analyses. ICESag37 was excised to generate a covalent circular intermediate, which was transferable to S. agalactiae. Inverse PCR was performed to detect the circular form. A serine family integrase mediated its chromosomal integration into rumA, which is a known hotspot for the integration of streptococcal ICEs. The integration site was confirmed using PCR. ICESag37 carried genes for resistance to multiple antibiotics, including erythromycin [erm(B)], tetracycline [tet(O)], and aminoglycosides [aadE, aphA, and ant(6)]. Potential virulence factors, including a two-component signal transduction system (nisK/nisR), were also observed in ICESag37. S1-PFGE analysis ruled out the existence of plasmids. ICESag37 is the first ICESa2603 family-like element identified in S. agalactiae carrying both resistance and potential virulence determinants. It might act as a vehicle for the dissemination of multidrug resistance and pathogenicity among S. agalactiae.


July 7, 2019  |  

Population structure and antimicrobial resistance profiles of Streptococcus suis serotype 2 sequence type 25 strains

Strains of serotype 2 Streptococcus suis are responsible for swine and human infections. Different serotype 2 genetic backgrounds have been defined using multilocus sequence typing (MLST). However, little is known about the genetic diversity within each MLST sequence type (ST). Here, we used whole-genome sequencing to test the hypothesis that S. suis serotype 2 strains of the ST25 lineage are genetically heterogeneous. We evaluated 51 serotype 2 ST25 S. suis strains isolated from diseased pigs and humans in Canada, the United States of America, and Thailand. Whole-genome sequencing revealed numerous large-scale rearrangements in the ST25 genome, compared to the genomes of ST1 and ST28 S. suis strains, which result, among other changes, in disruption of a pilus island locus. We report that recombination and lateral gene transfer contribute to ST25 genetic diversity. Phylogenetic analysis identified two main and distinct Thai and North American clades grouping most strains investigated. These clades also possessed distinct patterns of antimicrobial resistance genes, which correlated with acquisition of different integrative and conjugative elements (ICEs). Some of these ICEs were found to be integrated at a recombination hot spot, previously identified as the site of integration of the 89K pathogenicity island in serotype 2 ST7 S. suis strains. Our results highlight the limitations of MLST for phylogenetic analysis of S. suis, and the importance of lateral gene transfer and recombination as drivers of diversity in this swine pathogen and zoonotic agent.


July 7, 2019  |  

First report of cfr-encoding plasmids in the pandemic sequence type (ST) 22 methicillin-resistant Staphylococcus aureus Staphylococcal cassette chromosome mec type-IV clone.

Linezolid is often the drug of last resort for serious methicillin-resistant Staphylococcus aureus (MRSA) infections. Linezolid resistance is mediated by mutations in 23S rRNA and genes for ribosomal proteins, cfr encoding phenicol, lincosamide, oxazolidinone, pleuromutilin and streptogramin A (PhLOPSA) resistance, its homolgue cfr(B) or optrA conferring oxazolidinone and phenicol resistance. Linezolid resistance is rare in S. aureus, and cfr even rarer. This study investigated the clonality and linezolid resistance mechanisms of two MRSA isolates from patients in separate Irish hospitals. Isolates were subjected to cfr PCR, PhLOPSA susceptibility testing, 23S rRNA PCR and sequencing, DNA microarray profiling, spa typing, pulsed-field gel electrophoresis (PFGE), plasmid curing and conjugative transfer. Whole-genome sequencing was used for single nucleotide variant (SNV) analysis, multilocus-sequence typing, L-protein mutation identification, cfr-plasmid sequence analysis and optrA and cfr(B) detection. Isolates M12/0145 and M13/0401 exhibited linezolid MICs of 64 and 16 mg/liter, respectively, and harbored identical 23S rRNA and L22 mutations, but M12/0145 exhibited the mutation in 2/6 23S rRNA alleles compared to 1/5 in M13/0401. Both isolates were ST22-MRSA-IV/t032, harbored cfr, exhibited the PhLOPSA phenotype and lacked optrA and cfr(B). They differed by five PFGE bands and 603 SNVs. Isolate M12/0145 harbored cfr and fexA on a 41-kb conjugative pSCFS3-type plasmid, whereas M13/0401 harbored cfr and lsa(B) on a novel 27-kb plasmid. This is the first report of cfr in the pandemic ST22-MRSA-IV clone. Different cfr plasmids and mutations associated with linezolid resistance in genotypically distinct ST22-MRSA-IV isolates highlights that prudent management of linezolid use is essential. Copyright © 2016 Shore et al.


July 7, 2019  |  

Complete genome sequences of Aerococcus christensenii CCUG 28831T, Aerococcus sanguinicola CCUG 43001T, Aerococcus urinae CCUG 36881T, Aerococcus urinaeequi CCUG 28094T, Aerococcus urinaehominis CCUG 42038 BT, and Aerococcus viridans CCUG 4311T.

Strains belonging to the genus Aerococcusare causative agents of human and animal infections, including urogenital infections, bacteremia/septicemia, and infective endocarditis. This study reports the first fully closed and complete genome sequences of six type strains belonging to the genus Aerococcususing a combination of Illumina HiSeq and PacBio sequencing technologies. Copyright © 2016 Carkaci et al.


July 7, 2019  |  

Regulation of genetic flux between bacteria by restriction-modification systems.

Restriction-modification (R-M) systems are often regarded as bacteria’s innate immune systems, protecting cells from infection by mobile genetic elements (MGEs). Their diversification has been recently associated with the emergence of particularly virulent lineages. However, we have previously found more R-M systems in genomes carrying more MGEs. Furthermore, it has been suggested that R-M systems might favor genetic transfer by producing recombinogenic double-stranded DNA ends. To test whether R-M systems favor or disfavor genetic exchanges, we analyzed their frequency with respect to the inferred events of homologous recombination and horizontal gene transfer within 79 bacterial species. Genetic exchanges were more frequent in bacteria with larger genomes and in those encoding more R-M systems. We created a recognition target motif predictor for Type II R-M systems that identifies genomes encoding systems with similar restriction sites. We found more genetic exchanges between these genomes, independently of their evolutionary distance. Our results reconcile previous studies by showing that R-M systems are more abundant in promiscuous species, wherein they establish preferential paths of genetic exchange within and between lineages with cognate R-M systems. Because the repertoire and/or specificity of R-M systems in bacterial lineages vary quickly, the preferential fluxes of genetic transfer within species are expected to constantly change, producing time-dependent networks of gene transfer.


July 7, 2019  |  

Evolutionary architecture of the infant-adapted group of Bifidobacterium species associated with the probiotic function.

Bifidobacteria, often associated with the gastrointestinal tract of animals, are well known for their roles as probiotics. Among the dozens of Bifidobacterium species, Bifidobacterium bifidum, B. breve, and B. longum are the ones most frequently isolated from the feces of infants and known to help the digestion of human milk oligosaccharides. To investigate the correlation between the metabolic properties of bifidobacteria and their phylogeny, we performed a phylogenomic analysis based on 452 core genes of forty-four completely sequenced Bifidobacterium species. Results show that a major evolutionary event leading to the clade of the infant-adapted species is linked to carbohydrate metabolism, but it is not the only factor responsible for the adaptation of bifidobacteria to the gut. The genome of B. longum subsp. infantis, a typical bifidobacterium in the gut of breast-fed infants, encodes proteins associated with several kinds of species-specific metabolic pathways, including urea metabolism and biosynthesis of riboflavin and lantibiotics. Our results demonstrate that these metabolic features, which are associated with the probiotic function of bifidobacteria, are species-specific and highly correlate with their phylogeny. Copyright © 2016 Elsevier GmbH. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.