X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Sequence analysis of Staphylococcus hyicus ATCC 11249T, an etiological agent of exudative epidermitis in swine, reveals a type VII secretion system locus and a novel 116-kilobase genomic island harboring toxin-encoding genes.

Staphylococcus hyicus is the primary etiological agent of exudative epidermitis in swine. Analysis of the complete genome sequence of the type strain revealed a locus encoding a type VII secretion system and a large chromosomal island harboring the genes encoding exfoliative toxin ExhA and an EDIN toxin homolog. Copyright © 2015 Calcutt et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Bifidobacterium animalis subsp. lactis A6, a probiotic strain with high acid resistance ability.

Bifidobacterium animalis subsp. lactis A6 (BAA6) (CGMCC No. 9273) was a probiotic strain isolated from the feces of a centenarian. Previous study showed that BAA6 had high acid resistance to low pH which is a critical factor influencing its healthy benefits. Elaborating the stress resistant mechanisms of bifidobacteria is important to extensively exploit this probiotic. Here, we reported the complete genome sequence of BAA6 that contains 1,958,651 bp encoding 1622 CDSs, 16 rRNA genes, 52 tRNA genes. Copyright © 2015 Elsevier B.V. All rights reserved.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Actinobacillus equuli subspecies equuli ATCC 19392(T).

Actinobacillus equuli subsp. equuli is a member of the family Pasteurellaceae that is a common resident of the oral cavity and alimentary tract of healthy horses. At the same time, it can also cause a fatal septicemia in foals, commonly known as sleepy foal disease or joint ill disease. In addition, A. equuli subsp. equuli has recently been reported to act as a primary pathogen in breeding sows and piglets. To better understand how A. equuli subsp. equuli can cause disease, the genome of the type strain of A. equuli subsp. equuli, ATCC 19392(T), was sequenced using the PacBio RS…

Read More »

Sunday, July 7, 2019

Complex population structure and virulence differences among serotype 2 Streptococcus suis strains belonging to sequence type 28.

Streptococcus suis is a major swine pathogen and a zoonotic agent. Serotype 2 strains are the most frequently associated with disease. However, not all serotype 2 lineages are considered virulent. Indeed, sequence type (ST) 28 serotype 2 S. suis strains have been described as a homogeneous group of low virulence. However, ST28 strains are often isolated from diseased swine in some countries, and at least four human ST28 cases have been reported. Here, we used whole-genome sequencing and animal infection models to test the hypothesis that the ST28 lineage comprises strains of different genetic backgrounds and different virulence. We used…

Read More »

Sunday, July 7, 2019

Role of restriction-modification systems in prokaryotic evolution and ecology

Restriction–modification (R-M) systems are able to methylate or cleave DNA depending on methylation status of their recognition site. It allows them to protect bacterial cells from invasion by foreign DNA. Comparative analysis of a large number of available bacterial genomes and methylomes clearly demonstrates that the role of R-M systems in bacteria is wider than only defense. R-M systems maintain heterogeneity of a bacterial population and are involved in adaptation of bacteria to change in their environmental conditions. R-M systems can be essential for host colonization by pathogenic bacteria. Phase variation and intragenomic recombinations are sources of the fast evolution…

Read More »

Sunday, July 7, 2019

Stenotrophomonas comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria.

In recent years, the number of human infections caused by opportunistic pathogens has increased dramatically. Plant rhizospheres are one of the most typical natural reservoirs for these pathogens but they also represent a great source for beneficial microbes with potential for biotechnological applications. However, understanding the natural variation and possible differences between pathogens and beneficials is the main challenge in furthering these possibilities. The genus Stenotrophomonas contains representatives found to be associated with human and plant host.We used comparative genomics as well as transcriptomic and physiological approaches to detect significant borders between the Stenotrophomonas strains: the multi-drug resistant pathogenic S.…

Read More »

Sunday, July 7, 2019

Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes.

Recently it has been shown that Ensifer adhaerens can be used as a plant transformation technology, transferring genes into several plant genomes when equipped with a Ti plasmid. For this study, we have sequenced the genome of Ensifer adhaerens OV14 (OV14) and compared it with those of Agrobacterium tumefaciens C58 (C58) and Sinorhizobium meliloti 1021 (1021); the latter of which has also demonstrated a capacity to genetically transform crop genomes, albeit at significantly reduced frequencies.The 7.7 Mb OV14 genome comprises two chromosomes and two plasmids. All protein coding regions in the OV14 genome were functionally grouped based on an eggNOG…

Read More »

Sunday, July 7, 2019

Type I restriction enzymes and their relatives.

Type I restriction enzymes (REases) are large pentameric proteins with separate restriction (R), methylation (M) and DNA sequence-recognition (S) subunits. They were the first REases to be discovered and purified, but unlike the enormously useful Type II REases, they have yet to find a place in the enzymatic toolbox of molecular biologists. Type I enzymes have been difficult to characterize, but this is changing as genome analysis reveals their genes, and methylome analysis reveals their recognition sequences. Several Type I REases have been studied in detail and what has been learned about them invites greater attention. In this article, we…

Read More »

Sunday, July 7, 2019

Diversification of bacterial genome content through distinct mechanisms over different timescales.

Bacterial populations often consist of multiple co-circulating lineages. Determining how such population structures arise requires understanding what drives bacterial diversification. Using 616 systematically sampled genomes, we show that Streptococcus pneumoniae lineages are typically characterized by combinations of infrequently transferred stable genomic islands: those moving primarily through transformation, along with integrative and conjugative elements and phage-related chromosomal islands. The only lineage containing extensive unique sequence corresponds to a set of atypical unencapsulated isolates that may represent a distinct species. However, prophage content is highly variable even within lineages, suggesting frequent horizontal transmission that would necessitate rapidly diversifying anti-phage mechanisms to prevent…

Read More »

Sunday, July 7, 2019

Global phylogenomic analysis of nonencapsulated Streptococcus pneumoniae reveals a deep-branching classic lineage that is distinct from multiple sporadic lineages.

The surrounding capsule of Streptococcus pneumoniae has been identified as a major virulence factor and is targeted by pneumococcal conjugate vaccines (PCV). However, nonencapsulated S. pneumoniae (non-Ec-Sp) have also been isolated globally, mainly in carriage studies. It is unknown if non-Ec-Sp evolve sporadically, if they have high antibiotic nonsusceptiblity rates and a unique, specific gene content. Here, whole-genome sequencing of 131 non-Ec-Sp isolates sourced from 17 different locations around the world was performed. Results revealed a deep-branching classic lineage that is distinct from multiple sporadic lineages. The sporadic lineages clustered with a previously sequenced, global collection of encapsulated S. pneumoniae…

Read More »

Sunday, July 7, 2019

The Mycobacterium avium ssp. paratuberculosis specific mptD gene is required for maintenance of the metabolic homeostasis necessary for full virulence in mouse infections.

Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne’s disease, a chronic granulomatous enteritis in ruminants. Furthermore, infections of humans with MAP have been reported and a possible association with Crohn’s disease and diabetes type I is currently discussed. MAP owns large sequence polymorphisms (LSPs) that were exclusively found in this mycobacteria species. The relevance of these LSPs in the pathobiology of MAP is still unclear. The mptD gene (MAP3733c) of MAP belongs to a small group of functionally uncharacterized genes, which are not present in any other sequenced mycobacteria species. mptD is part of a predicted operon (mptABCDEF), encoding a putative…

Read More »

Sunday, July 7, 2019

Detection, isolation and characterization of Fusobacterium gastrosuis sp. nov. colonizing the stomach of pigs.

Nine strains of a novel Fusobacterium sp. were isolated from the stomach of 6-8 months old and adult pigs. The isolates were obligately anaerobic, although they endured 2h exposure to air. Phylogenetic analysis based on 16S rRNA and gyrase B genes demonstrated that the isolates showed high sequence similarity with Fusobacterium mortiferum, Fusobacterium ulcerans, Fusobacterium varium, Fusobacterium russii and Fusobacterium necrogenes, but formed a distinct lineage in the genus Fusobacterium. Comparative analysis of the genome of the type strain of this novel Fusobacterium sp. confirmed that it is different from other recognized Fusobacterium spp. DNA-DNA hybridization, fingerprinting and genomic %GC…

Read More »

Sunday, July 7, 2019

Brucella spp. of amphibians comprise genomically diverse motile strains competent for replication in macrophages and survival in mammalian hosts.

Twenty-one small Gram-negative motile coccobacilli were isolated from 15 systemically diseased African bullfrogs (Pyxicephalus edulis), and were initially identified as Ochrobactrum anthropi by standard microbiological identification systems. Phylogenetic reconstructions using combined molecular analyses and comparative whole genome analysis of the most diverse of the bullfrog strains verified affiliation with the genus Brucella and placed the isolates in a cluster containing B. inopinata and the other non-classical Brucella species but also revealed significant genetic differences within the group. Four representative but molecularly and phenotypically diverse strains were used for in vitro and in vivo infection experiments. All readily multiplied in macrophage-like…

Read More »

Sunday, July 7, 2019

Whole-genome sequences of two closely related bacteria, Actinomyces sp. strain Chiba101 and Actinomyces denticolens DSM 20671(T).

Actinomyces sp. strain Chiba101, isolated from an arthritic leg joint of a pig raised in Japan, is a bacterium closely related to Actinomyces denticolens Here, we deciphered the complete genome sequence of Actinomyces sp. Chiba101 and the high-quality draft genome sequence of A. denticolens DSM 20671(T). Copyright © 2017 Kanesaki et al.

Read More »

Sunday, July 7, 2019

Analysis of complete genome sequence and major surface antigens of Neorickettsia helminthoeca, causative agent of salmon poisoning disease.

Neorickettsia helminthoeca, a type species of the genus Neorickettsia, is an endosymbiont of digenetic trematodes of veterinary importance. Upon ingestion of salmonid fish parasitized with infected trematodes, canids develop salmon poisoning disease (SPD), an acute febrile illness that is particularly severe and often fatal in dogs without adequate treatment. We determined and analysed the complete genome sequence of N. helminthoeca: a single small circular chromosome of 884 232 bp encoding 774 potential proteins. N. helminthoeca is unable to synthesize lipopolysaccharides and most amino acids, but is capable of synthesizing vitamins, cofactors, nucleotides and bacterioferritin. N. helminthoeca is, however, distinct from majority of the family Anaplasmataceae…

Read More »

1 2 3

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »