Menu
July 7, 2019  |  

Comparative analysis of core genome MLST and SNP typing within a European Salmonella serovar Enteritidis outbreak.

Multi-country outbreaks of foodborne bacterial disease present challenges in their detection, tracking, and notification. As food is increasingly distributed across borders, such outbreaks are becoming more common. This increases the need for high-resolution, accessible, and replicable isolate typing schemes. Here we evaluate a core genome multilocus typing (cgMLST) scheme for the high-resolution reproducible typing of Salmonella enterica (S. enterica) isolates, by its application to a large European outbreak of S. enterica serovar Enteritidis. This outbreak had been extensively characterised using single nucleotide polymorphism (SNP)-based approaches. The cgMLST analysis was congruent with the original SNP-based analysis, the epidemiological data, and whole genome MLST (wgMLST) analysis. Combination of the cgMLST and epidemiological data confirmed that the genetic diversity among the isolates predated the outbreak, and was likely present at the infection source. There was consequently no link between country of isolation and genetic diversity, but the cgMLST clusters were congruent with date of isolation. Furthermore, comparison with publicly available Enteritidis isolate data demonstrated that the cgMLST scheme presented is highly scalable, enabling outbreaks to be contextualised within the Salmonella genus. The cgMLST scheme is therefore shown to be a standardised and scalable typing method, which allows Salmonella outbreaks to be analysed and compared across laboratories and jurisdictions. Copyright © 2018. Published by Elsevier B.V.


July 7, 2019  |  

First description of novel arginine catabolic mobile elements (ACMEs) types IV and V harboring a kdp operon in Staphylococcus epidermidis characterized by whole genome sequencing.

The arginine catabolic mobile element (ACME) was first described in the methicillin-resistant Staphylococcus aureus strain USA300 and is thought to facilitate survival on skin. To date three distinct ACME types have been characterized comprehensively in S. aureus and/or Staphylococcus epidermidis. Type I harbors the arc and opp3 operons encoding an arginine deaminase pathway and an oligopeptide permease ABC transporter, respectively, type II harbors the arc operon only, and type III harbors the opp3 operon only. To investigate the diversity and detailed genetic organization of ACME, whole genome sequencing (WGS) was performed on 32 ACME-harboring oro-nasal S. epidermidis isolates using MiSeq- and PacBio-based WGS platforms. In nine isolates the ACMEs lacked the opp3 operon, but harbored a complete kdp operon (kdpE/D/A/B/C) located a maximum of 2.8?kb upstream of the arc operon. The kdp operon exhibited 63% DNA sequence identity to the native S. aureus kdp operon. These findings identified a novel, previously undescribed ACME type (designated ACME IV), which could be subtyped (IVa and IVb) based on distinct 5′ flanking direct repeat sequences (DRs). Multilocus sequence typing (MLST) sequences extracted from the WGS data identified the sequence types (STs) of the isolates investigated. Four of the nine ACME IV isolates belonged to ST153, and one to ST17, a single locus variant of ST153. A tenth isolate, identified as ST5, harbored another novel ACME type (designated ACME V) containing the kdp, arc and opp3 operons and flanked by DR_F, and DR_B but lacked any internal DRs. ACME V was colocated with a staphylococcal chromosome cassette mec (SCCmec) IV element and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in a 116.9?kb composite island. The extensive genetic diversity of ACME in S. epidermidis has been further elucidated by WGS, revealing two novel ACME types IV and V for the first time. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.


July 7, 2019  |  

Moving forward: recent developments for the ferret biomedical research model.

Since the initial report in 1911, the domestic ferret has become an invaluable biomedical research model. While widely recognized for its utility in influenza virus research, ferrets are used for a variety of infectious and noninfectious disease models due to the anatomical, metabolic, and physiological features they share with humans and their susceptibility to many human pathogens. However, there are limitations to the model that must be overcome for maximal utility for the scientific community. Here, we describe important recent advances that will accelerate biomedical research with this animal model. Copyright © 2018 Albrecht et al.


July 7, 2019  |  

Complete genome sequence of industrial biocontrol strain Paenibacillus polymyxa HY96-2 and further analysis of Its biocontrol mechanism.

Paenibacillus polymyxa (formerly known as Bacillus polymyxa) has been extensively studied for agricultural applications as a plant-growth-promoting rhizobacterium and is also an important biocontrol agent. Our team has developed the P. polymyxa strain HY96-2 from the tomato rhizosphere as the first microbial biopesticide based on P. polymyxa for controlling plant diseases around the world, leading to the commercialization of this microbial biopesticide in China. However, further research is essential for understanding its precise biocontrol mechanisms. In this paper, we report the complete genome sequence of HY96-2 and the results of a comparative genomic analysis between different P. polymyxa strains. The complete genome size of HY96-2 was found to be 5.75 Mb and 5207 coding sequences were predicted. HY96-2 was compared with seven other P. polymyxa strains for which complete genome sequences have been published, using phylogenetic tree, pan-genome, and nucleic acid co-linearity analysis. In addition, the genes and gene clusters involved in biofilm formation, antibiotic synthesis, and systemic resistance inducer production were compared between strain HY96-2 and two other strains, namely, SC2 and E681. The results revealed that all three of the P. polymyxa strains have the ability to control plant diseases via the mechanisms of colonization (biofilm formation), antagonism (antibiotic production), and induced resistance (systemic resistance inducer production). However, the variation of the corresponding genes or gene clusters between the three strains may lead to different antimicrobial spectra and biocontrol efficacies. Two possible pathways of biofilm formation in P. polymyxa were reported for the first time after searching the KEGG database. This study provides a scientific basis for the further optimization of the field applications and quality standards of industrial microbial biopesticides based on HY96-2. It may also serve as a reference for studying the differences in antimicrobial spectra and biocontrol capability between different biocontrol agents.


July 7, 2019  |  

BMScan: using whole genome similarity to rapidly and accurately identify bacterial meningitis causing species.

Bacterial meningitis is a life-threatening infection that remains a public health concern. Bacterial meningitis is commonly caused by the following species: Neisseria meningitidis, Streptococcus pneumoniae, Listeria monocytogenes, Haemophilus influenzae and Escherichia coli. Here, we describe BMScan (Bacterial Meningitis Scan), a whole-genome analysis tool for the species identification of bacterial meningitis-causing and closely-related pathogens, an essential step for case management and disease surveillance. BMScan relies on a reference collection that contains genomes for 17 focal species to scan against to identify a given species. We established this reference collection by supplementing publically available genomes from RefSeq with genomes from the isolate collections of the Centers for Disease Control Bacterial Meningitis Laboratory and the Minnesota Department of Health Public Health Laboratory, and then filtered them down to a representative set of genomes which capture the diversity for each species. Using this reference collection, we evaluated two genomic comparison algorithms, Mash and Average Nucleotide Identity, for their ability to accurately and rapidly identify our focal species.We found that the results of Mash were strongly correlated with the results of ANI for species identification, while providing a significant reduction in run-time. This drastic difference in run-time enabled the rapid scanning of large reference genome collections, which, when combined with species-specific threshold values, facilitated the development of BMScan. Using a validation set of 15,503 genomes of our species of interest, BMScan accurately identified 99.97% of the species within 16 min 47 s.Identification of the bacterial meningitis pathogenic species is a critical step for case confirmation and further strain characterization. BMScan employs species-specific thresholds for previously-validated, genome-wide similarity statistics compiled from a curated reference genome collection to rapidly and accurately identify the species of uncharacterized bacterial meningitis pathogens and closely related pathogens. BMScan will facilitate the transition in public health laboratories from traditional phenotypic detection methods to whole genome sequencing based methods for species identification.


July 7, 2019  |  

Comparative genomic analysis of Staphylococcus lugdunensis shows a closed pan-genome and multiple barriers to horizontal gene transfer.

Coagulase negative staphylococci (CoNS) are commensal bacteria on human skin. Staphylococcus lugdunensis is a unique CoNS which produces various virulence factors and may, like S. aureus, cause severe infections, particularly in hospital settings. Unlike other staphylococci, it remains highly susceptible to antimicrobials, and genome-based phylogenetic studies have evidenced a highly conserved genome that distinguishes it from all other staphylococci.We demonstrate that S. lugdunensis possesses a closed pan-genome with a very limited number of new genes, in contrast to other staphylococci that have an open pan-genome. Whole-genome nucleotide and amino acid identity levels are also higher than in other staphylococci. We identified numerous genetic barriers to horizontal gene transfer that might explain this result. The S. lugdunensis genome has multiple operons encoding for restriction-modification, CRISPR/Cas and toxin/antitoxin systems. We also identified a new PIN-like domain-associated protein that might belong to a larger operon, comprising a metalloprotease, that could function as a new toxin/antitoxin or detoxification system.We show that S. lugdunensis has a unique genome profile within staphylococci, with a closed pan-genome and several systems to prevent horizontal gene transfer. Its virulence in clinical settings does not rely on its ability to acquire and exchange antibiotic resistance genes or other virulence factors as shown for other staphylococci.


July 7, 2019  |  

Complete genome sequence of soil actinobacteria Streptomyces cavourensis TJ430.

A new actinobacteria Streptomyces cavourensis TJ430 was isolated from the mountain soil collected from the southwest of China. In previous study, TJ430 showed striking bactericidal activities and strong ability of antibiotic production. Here, we report complete genome of this bacterium, consisting of 7.6?Mb linear chromosome and 0.2?Mb plasmids. It was predicted 6450 genes in chromosome and 225 genes in plasmids, as well as 12 gene islands in chromosome. Abundant genes have predicted functions in antibiotic metabolism and stress resistance. A whole-genome comparison of S. cavourensis TJ430, S. coelicolor A3(2), and S. lividans 66 indicates that TJ430 has a relatively high degree of strain specificity. The 16S rRNA phylogenetic tree shows the high identities (99.79%) of TJ430 with S. cavourensis DSM40300. TJ430 is a new and rare Streptomyces species, and analysis of its genome helps us to better understand primary metabolism mechanism of this isolate, as well as the evolutionary biology.© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


July 7, 2019  |  

Lifestyle of Lactobacillus hordei isolated from water kefir based on genomic, proteomic and physiological characterization.

Water kefir is a traditional fermented beverage made from sucrose, water, kefir granules, dried or fresh fruits. In our water kefir granules, Lactobacillus (L.) hordei is one of the predominant lactic acid bacteria (LAB) species of this presumed symbiotic consortium. It faces abundant sucrose versus limitation of amino- and fatty acids in an acidic environment. Sequencing of the genome of L. hordei TMW 1.1822 revealed one chromosome plus three plasmids. The size of the chromosome was 2.42?Mbp with a GC content of 35% GC and 2461 predicted coding sequences. Furthermore, we identified 1474 proteins upon growth on water kefir medium. Metabolic prediction revealed all enzymes required for the glycolytic Embden-Meyerhof (EMP) and phosphoketolase (PKP) pathways. Genes encoding all enzymes involved in citrate, pyruvate and mannitol metabolism are present. Moreover, it was confirmed that L. hordei is prototrophic for 11 amino acids and auxotrophic for 6 amino acids when combining putative biosynthesis pathways for amino acids with physiological characterization. Still, for glycine, serine and methionine no sure auxotype could be determined. The OppABCDF peptide transport system is complete, and 13 genes encoding peptidases are present. The arginine deiminase system, was predicted to be complete except for carbamate kinase, thus enabling neutralization reactions via ammonium formation but no additional energy generation. Taken together our findings enable prediction of the L. hordei lifestyle in water kefir: Abundant sucrose is consumed directly via parallel EMP and PK pathways and is also extracellularly converted to dextran and fructose by a glucansucrase, leaving fructose as additional carbon source. Essential amino acids (in the form of peptides) and citrate are acquired from fruits. In the lack of FabB unsaturated fatty acids are synthesized by predicted alternative enzymes. Formation of acetoin and diacetyl as well as arginine conversion reactions enable acidification limitation. Other members of the water kefir consortium (yeasts, acetic acid bacteria) likely facilitate or support growth of L. hordei by delivering gluconate, mannitol, amino- and fatty acids and vitamins. Copyright © 2018 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Genome analysis of Vallitalea guaymasensis strain L81 isolated from a deep-sea hydrothermal vent system.

Abyssivirga alkaniphila strain L81T, recently isolated from a black smoker biofilm at the Loki’s Castle hydrothermal vent field, was previously described as a mesophilic, obligately anaerobic heterotroph able to ferment carbohydrates, peptides, and aliphatic hydrocarbons. The strain was classified as a new genus within the family Lachnospiraceae. Herein, its genome is analyzed and A. alkaniphila is reassigned to the genus Vallitalea as a new strain of V. guaymasensis, designated V. guaymasensis strain L81. The 6.4 Mbp genome contained 5651 protein encoding genes, whereof 4043 were given a functional prediction. Pathways for fermentation of mono-saccharides, di-saccharides, peptides, and amino acids were identified whereas a complete pathway for the fermentation of n-alkanes was not found. Growth on carbohydrates and proteinous compounds supported methane production in co-cultures with Methanoplanus limicola. Multiple confurcating hydrogen-producing hydrogenases, a putative bifurcating electron-transferring flavoprotein—butyryl-CoA dehydrogenase complex, and a Rnf-complex form a basis for the observed hydrogen-production and a putative reverse electron-transport in V. guaymasensis strain L81. Combined with the observation that n-alkanes did not support growth in co-cultures with M. limicola, it seemed more plausible that the previously observed degradation patterns of crude-oil in strain L81 are explained by unspecific activation and may represent a detoxification mechanism, representing an interesting ecological function. Genes encoding a capacity for polyketide synthesis, prophages, and resistance to antibiotics shows interactions with the co-occurring microorganisms. This study enlightens the function of the fermentative microorganisms from hydrothermal vents systems and adds valuable information on the bioprospecting potential emerging in deep-sea hydrothermal systems.


July 7, 2019  |  

Deciphering mixotrophic Clostridium formicoaceticum metabolism and energy conservation: Genomic analysis and experimental studies.

Clostridium formicoaceticum, a Gram-negative mixotrophic homoacetogen, produces acetic acid as the sole metabolic product from various carbon sources, including fructose, glycerol, formate, and CO2. Its genome of 4.59-Mbp contains a highly conserved Wood-Ljungdahl pathway gene cluster with the same layout as that in other mixotrophic acetogens, including Clostridium aceticum, Clostridium carboxidivorans, and Clostridium ljungdahlii. For energy conservation, C. formicoaceticum does not have all the genes required for the synthesis of cytochrome or quinone used for generating proton gradient in H+-dependent acetogens such as Moorella thermoacetica; instead, it has the Rnf system and a Na+-translocating ATPase similar to the one in Acetobacterium woodii. Its growth in both heterotrophic and autotrophic media were dependent on the sodium concentration. C. formicoaceticum has genes encoding acetaldehyde dehydrogenases, alcohol dehydrogenases, and aldehyde oxidoreductases, which could convert acetyl-CoA and acetate to ethanol and butyrate to butanol under excessive reducing equivalent conditions. Copyright © 2018 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Draft genome sequence of Olsenella sp. KGMB 04489 isolated from healthy Korean human feces

The genus of Olsenella has been isolated from vertebrate animal mouth, rumen, and feces. Olsenella sp. KGMB 04489 was isolated from fecal samples obtained from a healthy Korean. The whole-genome sequence of Olsenella sp. KGMB 04489 was analyzed using the PacBio Sequel platform. The genome comprises a 2,108,034 bp chromosome with a G + C content of 65.50%, 1,838 total genes, 13 rRNA genes, and 52 tRNA genes. Also, we found that strain KGMB 04489 had some genes for hydrolysis enzymes, and antibiotic biosynthesis and resistance in its genome based on the result of genome analysis.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.