Menu
April 21, 2020  |  

Antibiotic susceptibility of plant-derived lactic acid bacteria conferring health benefits to human.

Lactic acid bacteria (LAB) confer health benefits to human when administered orally. We have recently isolated several species of LAB strains from plant sources, such as fruits, vegetables, flowers, and medicinal plants. Since antibiotics used to treat bacterial infection diseases induce the emergence of drug-resistant bacteria in intestinal microflora, it is important to evaluate the susceptibility of LAB strains to antibiotics to ensure the safety and security of processed foods. The aim of the present study is to determine the minimum inhibitory concentration (MIC) of antibiotics against several plant-derived LAB strains. When aminoglycoside antibiotics, such as streptomycin (SM), kanamycin (KM), and gentamicin (GM), were evaluated using LAB susceptibility test medium (LSM), the MIC was higher than when using Mueller-Hinton (MH) medium. Etest, which is an antibiotic susceptibility assay method consisting of a predefined gradient of antibiotic concentrations on a plastic strip, is used to determine the MIC of antibiotics world-wide. In the present study, we demonstrated that Etest was particularly valuable while testing LAB strains. We also show that the low susceptibility of the plant-derived LAB strains against each antibiotic tested is due to intrinsic resistance and not acquired resistance. This finding is based on the whole-genome sequence information reflecting the horizontal spread of the drug-resistance genes in the LAB strains.


April 21, 2020  |  

Outcomes and characterization of chromosomal self-targeting by native CRISPR-Cas systems in Streptococcus thermophilus.

CRISPR-Cas systems provide adaptive immunity against phages in prokaryotes via DNA-encoded, RNA-mediated, nuclease-dependent targeting and cleavage. Due to inefficient and relatively limited DNA repair pathways in bacteria, CRISPR-Cas systems can be repurposed for lethal DNA targeting that selects for sequence variants. In this study, the relative killing efficiencies of endogenous Type I and Type II CRISPR-Cas systems in the model organism Streptococcus thermophilus DGCC7710 were assessed. Additionally, the genetic and phenotypic outcomes of chromosomal targeting by plasmid-programmed Type I-E or Type II-A systems were analyzed. Efficient killing was observed using both systems, in a dose-dependent manner when delivering 0.4-400 ng of plasmid DNA. Targeted PCR screening and genome sequencing were used to determine the genetic basis enabling survival, showing that evasion of Type I-E self-targeting was primarily the result of low-frequency defective plasmids that excised the targeting spacer. The most notable genotype recovered from Type II-A targeting of genomic locus, lacZ, was a 34 kb-deletion derived from homologous recombination (HR) between identical conserved sequences in two separate galE coding regions, resulting in 2% loss of the genome. Collectively, these results suggest that HR contributes to the plasticity and remodeling of bacterial genomes, leading to evasion of genome targeting by CRISPR-Cas systems. © FEMS 2019.


April 21, 2020  |  

Complete Genome Sequences of Bacteriocin-Producing Streptococcus thermophilus Strains ST106 and ST109.

Streptococcus thermophilus strains ST106 and ST109 produce broad-spectrum bacteriocins encoded within a bacteriocin-like peptide (blp) gene cluster. This study reports the complete genome sequences for both strains, with the ST109 chromosome containing 1,788,866 nucleotides (nt) and 1,572 predicted genes, and ST106 having 1,856,083 nt and 1,601 predicted genes.


April 21, 2020  |  

Biomimetic hydroxyapatite nanocrystals are an active carrier for Salmonella bacteriophages.

The use of bacteriophages represents a valid alternative to conventional antimicrobial treatments, overcoming the widespread bacterial antibiotic resistance phenomenon. In this work, we evaluated whether biomimetic hydroxyapatite (HA) nanocrystals are able to enhance some properties of bacteriophages. The final goal of this study was to demonstrate that biomimetic HA nanocrystals can be used for bacteriophage delivery in the context of bacterial infections, and contribute – at the same time – to enhance some of the biological properties of the same bacteriophages such as stability, preservation, antimicrobial activity, and so on.Phage isolation and characterization were carried out by using Mitomycin C and following double-layer agar technique. The biomimetic HA water suspension was synthesized in order to obtain nanocrystals with plate-like morphology and nanometric dimensions. The interaction of phages with the HA was investigated by dynamic light scattering and Zeta potential analyses. The cytotoxicity and intracellular killing activities of the phage-HA complex were evaluated in human hepatocellular carcinoma HepG2 cells. The bacterial inhibition capacity of the complex was assessed on chicken minced meat samples infected with Salmonella Rissen.Our data highlighted that the biomimetic HA nanocrystal-bacteriophage complex was more stable and more effective than phages alone in all tested experimental conditions.Our results evidenced the important contribution of biomimetic HA nanocrystals: they act as an excellent carrier for bacteriophage delivery and enhance its biological characteristics. This study confirmed the significant role of the mineral HA when it is complexed with biological entities like bacteriophages, as it has been shown for molecules such as lactoferrin.


April 21, 2020  |  

PacBio sequencing reveals bacterial community diversity in cheeses collected from different regions.

Cheese is a fermented dairy product that is popular for its unique flavor and nutritional value. Recent studies have shown that microorganisms in cheese play an important role in the fermentation process and determine the quality of the cheese. We collected 12 cheese samples from different regions and studied the composition of their bacterial communities using PacBio small-molecule real-time sequencing (Pacific Biosciences, Menlo Park, CA). Our data revealed 144 bacterial genera (including Lactobacillus, Streptococcus, Lactococcus, and Staphylococcus) and 217 bacterial species (including Lactococcus lactis, Streptococcus thermophilus, Staphylococcus equorum, and Streptococcus uberis). We investigated the flavor quality of the cheese samples using an electronic nose system and we found differences in flavor-quality indices among samples from different regions. We found a clustering tendency based on flavor quality using principal component analysis. We found correlations between lactic acid bacteria and the flavor quality of the cheese samples. Biodegradation and metabolism of xenobiotics, and lipid-metabolism-related pathways, were predicted to contribute to differences in cheese flavor using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). This preliminary study explored the bacterial communities in cheeses collected from different regions and their potential genome functions from the perspective of flavor quality.Copyright © 2020 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

Development of CRISPR-Cas systems for genome editing and beyond

The development of clustered regularly interspaced short-palindromic repeat (CRISPR)-Cas systems for genome editing has transformed the way life science research is conducted and holds enormous potential for the treatment of disease as well as for many aspects of biotech- nology. Here, I provide a personal perspective on the development of CRISPR-Cas9 for genome editing within the broader context of the field and discuss our work to discover novel Cas effectors and develop them into additional molecular tools. The initial demonstra- tion of Cas9-mediated genome editing launched the development of many other technologies, enabled new lines of biological inquiry, and motivated a deeper examination of natural CRISPR-Cas systems, including the discovery of new types of CRISPR-Cas systems. These new discoveries in turn spurred further technological developments. I review these exciting discoveries and technologies as well as provide an overview of the broad array of applications of these technologies in basic research and in the improvement of human health. It is clear that we are only just beginning to unravel the potential within microbial diversity, and it is quite likely that we will continue to discover other exciting phenomena, some of which it may be possible to repurpose as molecular technologies. The transformation of mysterious natural phenomena to powerful tools, however, takes a collective effort to discover, characterize, and engineer them, and it has been a privilege to join the numerous researchers who have contributed to this transformation of CRISPR-Cas systems.


April 21, 2020  |  

Mobilome of Brevibacterium aurantiacum Sheds Light on Its Genetic Diversity and Its Adaptation to Smear-Ripened Cheeses.

Brevibacterium aurantiacum is an actinobacterium that confers key organoleptic properties to washed-rind cheeses during the ripening process. Although this industrially relevant species has been gaining an increasing attention in the past years, its genome plasticity is still understudied due to the unavailability of complete genomic sequences. To add insights on the mobilome of this group, we sequenced the complete genomes of five dairy Brevibacterium strains and one non-dairy strain using PacBio RSII. We performed phylogenetic and pan-genome analyses, including comparisons with other publicly available Brevibacterium genomic sequences. Our phylogenetic analysis revealed that these five dairy strains, previously identified as Brevibacterium linens, belong instead to the B. aurantiacum species. A high number of transposases and integrases were observed in the Brevibacterium spp. strains. In addition, we identified 14 and 12 new insertion sequences (IS) in B. aurantiacum and B. linens genomes, respectively. Several stretches of homologous DNA sequences were also found between B. aurantiacum and other cheese rind actinobacteria, suggesting horizontal gene transfer (HGT). A HGT region from an iRon Uptake/Siderophore Transport Island (RUSTI) and an iron uptake composite transposon were found in five B. aurantiacum genomes. These findings suggest that low iron availability in milk is a driving force in the adaptation of this bacterial species to this niche. Moreover, the exchange of iron uptake systems suggests cooperative evolution between cheese rind actinobacteria. We also demonstrated that the integrative and conjugative element BreLI (Brevibacterium Lanthipeptide Island) can excise from B. aurantiacum SMQ-1417 chromosome. Our comparative genomic analysis suggests that mobile genetic elements played an important role into the adaptation of B. aurantiacum to cheese ecosystems.


April 21, 2020  |  

Long-read based de novo assembly of low-complexity metagenome samples results in finished genomes and reveals insights into strain diversity and an active phage system.

Complete and contiguous genome assemblies greatly improve the quality of subsequent systems-wide functional profiling studies and the ability to gain novel biological insights. While a de novo genome assembly of an isolated bacterial strain is in most cases straightforward, more informative data about co-existing bacteria as well as synergistic and antagonistic effects can be obtained from a direct analysis of microbial communities. However, the complexity of metagenomic samples represents a major challenge. While third generation sequencing technologies have been suggested to enable finished metagenome-assembled genomes, to our knowledge, the complete genome assembly of all dominant strains in a microbiome sample has not been demonstrated. Natural whey starter cultures (NWCs) are used in cheese production and represent low-complexity microbiomes. Previous studies of Swiss Gruyère and selected Italian hard cheeses, mostly based on amplicon metagenomics, concurred that three species generally pre-dominate: Streptococcus thermophilus, Lactobacillus helveticus and Lactobacillus delbrueckii.Two NWCs from Swiss Gruyère producers were subjected to whole metagenome shotgun sequencing using the Pacific Biosciences Sequel and Illumina MiSeq platforms. In addition, longer Oxford Nanopore Technologies MinION reads had to be generated for one to resolve repeat regions. Thereby, we achieved the complete assembly of all dominant bacterial genomes from these low-complexity NWCs, which was corroborated by a 16S rRNA amplicon survey. Moreover, two distinct L. helveticus strains were successfully co-assembled from the same sample. Besides bacterial chromosomes, we could also assemble several bacterial plasmids and phages and a corresponding prophage. Biologically relevant insights were uncovered by linking the plasmids and phages to their respective host genomes using DNA methylation motifs on the plasmids and by matching prokaryotic CRISPR spacers with the corresponding protospacers on the phages. These results could only be achieved by employing long-read sequencing data able to span intragenomic as well as intergenomic repeats.Here, we demonstrate the feasibility of complete de novo genome assembly of all dominant strains from low-complexity NWCs based on whole metagenomics shotgun sequencing data. This allowed to gain novel biological insights and is a fundamental basis for subsequent systems-wide omics analyses, functional profiling and phenotype to genotype analysis of specific microbial communities.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.