Menu
September 22, 2019  |  

Comprehensive profiling of rhizome-associated alternative splicing and alternative polyadenylation in moso bamboo (Phyllostachys edulis).

Moso bamboo (Phyllostachys edulis) represents one of the fastest-spreading plants in the world, due in part to its well-developed rhizome system. However, the post-transcriptional mechanism for the development of the rhizome system in bamboo has not been comprehensively studied. We therefore used a combination of single-molecule long-read sequencing technology and polyadenylation site sequencing (PAS-seq) to re-annotate the bamboo genome, and identify genome-wide alternative splicing (AS) and alternative polyadenylation (APA) in the rhizome system. In total, 145 522 mapped full-length non-chimeric (FLNC) reads were analyzed, resulting in the correction of 2241 mis-annotated genes and the identification of 8091 previously unannotated loci. Notably, more than 42 280 distinct splicing isoforms were derived from 128 667 intron-containing full-length FLNC reads, including a large number of AS events associated with rhizome systems. In addition, we characterized 25 069 polyadenylation sites from 11 450 genes, 6311 of which have APA sites. Further analysis of intronic polyadenylation revealed that LTR/Gypsy and LTR/Copia were two major transposable elements within the intronic polyadenylation region. Furthermore, this study provided a quantitative atlas of poly(A) usage. Several hundred differential poly(A) sites in the rhizome-root system were identified. Taken together, these results suggest that post-transcriptional regulation may potentially have a vital role in the underground rhizome-root system.© 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.


September 22, 2019  |  

Full-length transcriptome sequencing and modular organization analysis of naringin/neoeriocitrin related gene expression pattern in Drynaria roosii.

Drynaria roosii (Nakaike) is a traditional Chinese medicinal fern, known as ‘GuSuiBu’. The effective components, naringin and neoeriocitrin, share a highly similar chemical structure and medicinal function. Our HPLC-tandem mass spectrometry (MS/MS) results showed that the accumulation of naringin/neoeriocitrin depended on specific tissues or ages. However, little was known about the expression patterns of naringin/neoeriocitrin-related genes involved in their regulatory pathways. Due to a lack of basic genetic information, we applied a combination of single molecule real-time (SMRT) sequencing and second-generation sequencing (SGS) to generate the complete and full-length transcriptome of D. roosii. According to the SGS data, the differentially expressed gene (DEG)-based heat map analysis revealed that naringin/neoeriocitrin-related gene expression exhibited obvious tissue- and time-specific transcriptomic differences. Using the systems biology method of modular organization analysis, we clustered 16,472 DEGs into 17 gene modules and studied the relationships between modules and tissue/time point samples, as well as modules and naringin/neoeriocitrin contents. We found that naringin/neoeriocitrin-related DEGs distributed in nine distinct modules, and DEGs in these modules showed significantly different patterns of transcript abundance to be linked to specific tissues or ages. Moreover, weighted gene co-expression network analysis (WGCNA) results further identified that PAL, 4CL and C4H, and C3H and HCT acted as the major hub genes involved in naringin and neoeriocitrin synthesis, respectively, and exhibited high co-expression with MYB- and basic helix-leucine-helix (bHLH)-regulated genes. In this work, modular organization and co-expression networks elucidated the tissue and time specificity of the gene expression pattern, as well as hub genes associated with naringin/neoeriocitrin synthesis in D. roosii. Simultaneously, the comprehensive transcriptome data set provided important genetic information for further research on D. roosii.


September 22, 2019  |  

Full-length transcriptome sequences of ephemeral plant Arabidopsis pumila provides insight into gene expression dynamics during continuous salt stress.

Arabidopsis pumila is native to the desert region of northwest China and it is extraordinarily well adapted to the local semi-desert saline soil, thus providing a candidate plant system for environmental adaptation and salt-tolerance gene mining. However, understanding of the salt-adaptation mechanism of this species is limited because of genomic sequences scarcity. In the present study, the transcriptome profiles of A. pumila leaf tissues treated with 250 mM NaCl for 0, 0.5, 3, 6, 12, 24 and 48 h were analyzed using a combination of second-generation sequencing (SGS) and third-generation single-molecule real-time (SMRT) sequencing.Correction of SMRT long reads by SGS short reads resulted in 59,328 transcripts. We found 8075 differentially expressed genes (DEGs) between salt-stressed tissues and controls, of which 483 were transcription factors and 1157 were transport proteins. Most DEGs were activated within 6 h of salt stress and their expression stabilized after 48 h; the number of DEGs was greatest within 12 h of salt stress. Gene annotation and functional analyses revealed that expression of genes associated with the osmotic and ionic phases rapidly and coordinately changed during the continuous salt stress in this species, and salt stress-related categories were highly enriched among these DEGs, including oxidation-reduction, transmembrane transport, transcription factor activity and ion channel activity. Orphan, MYB, HB, bHLH, C3H, PHD, bZIP, ARF and NAC TFs were most enriched in DEGs; ABCB1, CLC-A, CPK30, KEA2, KUP9, NHX1, SOS1, VHA-A and VP1 TPs were extensively up-regulated in salt-stressed samples, suggesting that they play important roles in slat tolerance. Importantly, further experimental studies identified a mitogen-activated protein kinase (MAPK) gene MAPKKK18 as continuously up-regulated throughout salt stress, suggesting its crucial role in salt tolerance. The expression patterns of the salt-responsive 24 genes resulted from quantitative real-time PCR were basically consistent with their transcript abundance changes identified by RNA-Seq.The full-length transcripts generated in this study provide a more accurate depiction of gene transcription of A. pumila. We identified potential genes involved in salt tolerance of A. pumila. These data present a genetic resource and facilitate better understanding of salt-adaptation mechanism for ephemeral plants.


September 22, 2019  |  

Genome re-annotation of the wild strawberry Fragaria vesca using extensive Illumina-and SMRT-based RNA-seq datasets

The genome of the wild diploid strawberry species Fragaria vesca, an ideal model system of cultivated strawberry (Fragaria × ananassa, octoploid) and other Rosaceae family crops, was first published in 2011 and followed by a new assembly (Fvb). However, the annotation for Fvb mainly relied on ab initio predictions and included only predicted coding sequences, therefore an improved annotation is highly desirable. Here, a new annotation version named v2.0.a2 was created for the Fvb genome by a pipeline utilizing one PacBio library, 90 Illumina RNA-seq libraries, and 9 small RNA-seq libraries. Altogether, 18,641 genes (55.6% out of 33,538 genes) were augmented with information on the 5′ and/or 3′ UTRs, 13,168 (39.3%) protein-coding genes were modified or newly identified, and 7,370 genes were found to possess alternative isoforms. In addition, 1,938 long non-coding RNAs, 171 miRNAs, and 51,714 small RNA clusters were integrated into the annotation. This new annotation of F. vesca is substantially improved in both accuracy and integrity of gene predictions, beneficial to the gene functional studies in strawberry and to the comparative genomic analysis of other horticultural crops in Rosaceae family.


September 22, 2019  |  

Circular RNA architecture and differentiation during leaf bud to young leaf development in tea (Camellia sinensis).

Circular RNA (circRNA) discovery, expression patterns and experimental validation in developing tea leaves indicates its correlation with circRNA-parental genes and potential roles in ceRNA interaction network. Circular RNAs (circRNAs) have recently emerged as a novel class of abundant endogenous stable RNAs produced by circularization with regulatory potential. However, identification of circRNAs in plants, especially in non-model plants with large genomes, is challenging. In this study, we undertook a systematic identification of circRNAs from different stage tissues of tea plant (Camellia sinensis) leaf development using rRNA-depleted circular RNA-seq. By combining two state-of-the-art detecting tools, we characterized 3174 circRNAs, of which 342 were shared by each approach, and thus considered high-confidence circRNAs. A few predicted circRNAs were randomly chosen, and 20 out of 24 were experimental confirmed by PCR and Sanger sequencing. Similar in other plants, tissue-specific expression was also observed for many C. sinensis circRNAs. In addition, we found that circRNA abundances were positively correlated with the mRNA transcript abundances of their parental genes. qRT-PCR validated the differential expression patterns of circRNAs between leaf bud and young leaf, which also indicated the low expression abundance of circRNAs compared to the standard mRNAs from the parental genes. We predicted the circRNA-microRNA interaction networks, and 54 of the differentially expressed circRNAs were found to have potential tea plant miRNA binding sites. The gene sets encoding circRNAs were significantly enriched in chloroplasts related GO terms and photosynthesis/metabolites biosynthesis related KEGG pathways, suggesting the candidate roles of circRNAs in photosynthetic machinery and metabolites biosynthesis during leaf development.


September 22, 2019  |  

Transcriptome comparative analysis of salt stress responsiveness in chrysanthemum (Dendranthema grandiflorum) roots by Illumina- and Single-Molecule Real-Time-based RNA sequencing.

Salt response has long been considered a polygenic-controlled character in plants. Under salt stress conditions, plants respond by activating a great amount of proteins and enzymes. To develop a better understanding of the molecular mechanism and screen salt responsive genes in chrysanthemum under salt stress, we performed the RNA sequencing (RNA-seq) on both salt-processed chrysanthemum seedling roots and the control group, and gathered six cDNA databases eventually. Moreover, to overcome the Illumina HiSeq technology’s limitation on sufficient length of reads and improve the quality and accuracy of the result, we combined Illumina HiSeq with single-molecule real-time sequencing (SMRT-seq) to decode the full-length transcripts. As a result, we successfully collected 550,823 unigenes, and from which we selected 48,396 differentially expressed genes (DEGs). Many of these DEGs were associated with the signal transduction, biofilm system, antioxidant system, and osmotic regulation system, such as mitogen-activated protein kinase (MAPK), Acyl-CoA thioesterase (ACOT), superoxide (SOD), catalase (CAT), peroxisomal membrane protein (PMP), and pyrroline-5-carboxylate reductase (P5CR). The quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 15 unigenes was performed to test the data validity. The results were highly consistent with the RNA-seq results. In all, these findings could facilitate further detection of the responsive molecular mechanism under salt stress. They also provided more accurate candidate genes for genetic engineering on salt-tolerant chrysanthemums.


September 22, 2019  |  

Revealing the transcriptomic complexity of switchgrass by PacBio long-read sequencing.

Switchgrass (Panicum virgatum L.) is an important bioenergy crop widely used for lignocellulosic research. While extensive transcriptomic analyses have been conducted on this species using short read-based sequencing techniques, very little has been reliably derived regarding alternatively spliced (AS) transcripts.We present an analysis of transcriptomes of six switchgrass tissue types pooled together, sequenced using Pacific Biosciences (PacBio) single-molecular long-read technology. Our analysis identified 105,419 unique transcripts covering 43,570 known genes and 8795 previously unknown genes. 45,168 are novel transcripts of known genes. A total of 60,096 AS transcripts are identified, 45,628 being novel. We have also predicted 1549 transcripts of genes involved in cell wall construction and remodeling, 639 being novel transcripts of known cell wall genes. Most of the predicted transcripts are validated against Illumina-based short reads. Specifically, 96% of the splice junction sites in all the unique transcripts are validated by at least five Illumina reads. Comparisons between genes derived from our identified transcripts and the current genome annotation revealed that among the gene set predicted by both analyses, 16,640 have different exon-intron structures.Overall, substantial amount of new information is derived from the PacBio RNA data regarding both the transcriptome and the genome of switchgrass.


September 22, 2019  |  

Analysis of transcripts and splice isoforms in red clover (Trifolium pratense L.) by single-molecule long-read sequencing.

Red clover (Trifolium pratense L.) is an important cool-season legume plant, which is the most widely planted forage legume after alfalfa. Although a draft genome sequence was published already, the sequences and completed structure of mRNA transcripts remain unclear, which limit further explore on red clover.In this study, the red clover transcriptome was sequenced using single-molecule long-read sequencing to identify full-length splice isoforms, and 29,730 novel isoforms from known genes and 2194 novel isoforms from novel genes were identified. A total of 5492 alternative splicing events was identified and the majority of alter spliced events in red clover was corrected as intron retention. In addition, of the 15,229 genes detected by SMRT, 8719 including 186,517 transcripts have at least one poly(A) site. Furthermore, we identified 4333 long non-coding RNAs and 3762 fusion transcripts.We analyzed full-length transcriptome of red clover with PacBio SMRT. Those new findings provided important information for improving red clover draft genome annotation and fully characterization of red clover transcriptome.


September 22, 2019  |  

Comparative transcriptomic and physiological analyses of Medicago sativa L. indicates that multiple regulatory networks are activated during continuous ABA treatment.

Alfalfa is the most extensively cultivated forage legume worldwide. However, the molecular mechanisms underlying alfalfa responses to exogenous abscisic acid (ABA) are still unknown. In this study, the first global transcriptome profiles of alfalfa roots under ABA treatments for 1, 3 and 12 h (three biological replicates for each time point, including the control group) were constructed using a BGISEQ-500 sequencing platform. A total of 50,742 isoforms with a mean length of 2541 bp were generated, and 4944 differentially expressed isoforms (DEIs) were identified after ABA deposition. Metabolic analyses revealed that these DEIs were involved in plant hormone signal transduction, transcriptional regulation, antioxidative defense and pathogen immunity. Notably, several well characterized hormone signaling pathways, for example, the core ABA signaling pathway, was activated, while salicylic acid, jasmonate and ethylene signaling pathways were mainly suppressed by exogenous ABA. Moreover, the physiological work showed that catalase and peroxidase activity and glutathione and proline content were increased after ABA deposition, which is in accordance with the dynamic transcript profiles of the relevant genes in antioxidative defense system. These results indicate that ABA has the potential to improve abiotic stress tolerance, but that it may negatively regulate pathogen resistance in alfalfa.


September 22, 2019  |  

Transcriptome profiling using Illumina- and SMRT-based RNA-seq of hot pepper for in-depth understanding of genes involved in CMV infection.

Hot pepper (Capsicum annuum L.) is becoming an increasingly important vegetable crop in the world. Cucumber mosaic virus (CMV) is a destructive virus that can cause leaf distortion and fruit lesions, affecting pepper production. However, studies on the response to CMV infection in pepper at the transcriptional level are limited. In this study, the transcript profiles of pepper leaves after CMV infection were investigated using Illumina and single-molecule real-time (SMRT) RNA-sequencing (RNA-seq). A total of 2143 differentially expressed genes (DEGs) were identified at five different stages. Gene ontology (GO) and KEGG analysis revealed that these DEGs were involved in the response to stress, defense response and plant-pathogen interaction pathways. Among these DEGs, several key genes that consistently appeared in studies of plant-pathogen interactions had increased transcript abundance after inoculation, including chitinase, pathogenesis-related (PR) protein, TMV resistance protein, WRKY transcription factor and jasmonate ZIM-domain protein. Four of these DEGs were further validated by quantitative real-time RT-PCR (qRT-PCR). Furthermore, a total of 73, 597 alternative splicing (AS) events were identified in the pepper leaves after CMV infection, distributed in 12, 615 genes. The intron retention of WRKY33 (Capana09g001251) might be involved in the regulation of CMV infection. Taken together, our study provides a transcriptome-wide insight into the molecular basis of resistance to CMV infection in pepper leaves and potential candidate genes for improving resistance cultivars. Copyright © 2018 Elsevier B.V. All rights reserved.


September 22, 2019  |  

Bacterial microbiota composition of fermented fruit and vegetable juices (jiaosu) analyzed by single-molecule, real-time (SMRT) sequencing

Commercially manufactured ‘jiaosu’ (fermented fruit and vegetable juices) have gained popularity in Asia recently. Like other fermented products, they have a high microbial diversity and richness. However, no published study has yet described their microbiota composition. Thus, this work aimed to obtain the full-length 16S rRNA profiles of jiaosu using the PacBio single-molecule, real-time sequencing technology. We described the bacterial microbiota of three jiaosu products purchased from Taiwan and Japan. Bacterial sequences from all three samples distributed across seven different phyla, mainly Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Forty-three genera were identified (e.g. Ochrobactrum, Lactobacillus, Mycobacterium, and Acinetobacter). Fifty- five species were identified (e.g. Ochrobactrum lupini, Mycobacterium abscessus, Acinetobacter john- sonii, Lactobacillus paracasei, Lactobacillus delbrueckii, and Petrobacter succinatimandens). No patho- gen sequences were identified within the entire dataset. Moreover, only a low proportion of sequences represented common skin microflora and the food hygiene indicator Escherichia/ Shigella, suggesting overall acceptable sanitary conditions during the manufacturing process.


September 22, 2019  |  

Comparative genomics reveals cotton-specific virulence factors in flexible genomic regions in Verticillium dahliae and evidence of horizontal gene transfer from Fusarium.

Verticillium dahliae isolates are most virulent on the host from which they were originally isolated. Mechanisms underlying these dominant host adaptations are currently unknown. We sequenced the genome of V. dahliae Vd991, which is highly virulent on its original host, cotton, and performed comparisons with the reference genomes of JR2 (from tomato) and VdLs.17 (from lettuce). Pathogenicity-related factor prediction, orthology and multigene family classification, transcriptome analyses, phylogenetic analyses, and pathogenicity experiments were performed. The Vd991 genome harbored several exclusive, lineage-specific (LS) genes within LS regions (LSRs). Deletion mutants of the seven genes within one LSR (G-LSR2) in Vd991 were less virulent only on cotton. Integration of G-LSR2 genes individually into JR2 and VdLs.17 resulted in significantly enhanced virulence on cotton but did not affect virulence on tomato or lettuce. Transcription levels of the seven LS genes in Vd991 were higher during the early stages of cotton infection, as compared with other hosts. Phylogenetic analyses suggested that G-LSR2 was acquired from Fusarium oxysporum f. sp. vasinfectum through horizontal gene transfer. Our results provide evidence that horizontal gene transfer from Fusarium to Vd991 contributed significantly to its adaptation to cotton and may represent a significant mechanism in the evolution of an asexual plant pathogen.© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.


September 22, 2019  |  

Probiotic and anti-inflammatory potential of Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 isolated from infant feces.

A total of 22 Lactobacillus strains, which were isolated from infant feces were evaluated for their probiotic potential along with resistance to low pH and bile salts. Eight isolates (L. reuteri 3M02 and 3M03, L. gasseri 4M13, 4R22, 5R01, 5R02, and 5R13, and L. rhamnosus 4B15) with high tolerance to acid and bile salts, and ability to adhere to the intestine were screened from 22 strains. Further, functional properties of 8 Lactobacillus strains, such as anti-oxidation, inhibition of a-glucosidase activity, cholesterol-lowering, and anti-inflammation were evaluated. The properties were strain-specific. Particularly, two strains of L. rhamnosus, 4B15 (4B15) and L. gasseri 4M13 (4M13) showed considerably higher anti-oxidation, inhibition of a-glucosidase activity, and cholesterol-lowering, and greater inhibition of nitric oxide production than other strains. Moreover, the two selected strains substantially inhibited the release of inflammatory mediators such as TNF-a, IL-6, IL-1ß, and IL-10 stimulated the treatment of RAW 264.7 macrophages with LPS. In addition, whole genome sequencing and comparative genomic analysis of 4B15 and 4M13 indicated them as novel genomic strains. These results suggested that 4B15 and 4M13 showed the highest probiotic potential and have an impact on immune health by modulating pro-inflammatory cytokines.


September 22, 2019  |  

Vegetative compatibility groups partition variation in the virulence of Verticillium dahliae on strawberry.

Verticillium dahliae infection of strawberry (Fragaria x ananassa) is a major cause of disease-induced wilting in soil-grown strawberries across the world. To understand what components of the pathogen are affecting disease expression, the presence of the known effector VdAve1 was screened in a sample of Verticillium dahliae isolates. Isolates from strawberry were found to contain VdAve1 and were divided into two major clades, based upon their vegetative compatibility groups (VCG); no UK strawberry isolates contained VdAve1. VC clade was strongly related to their virulence levels. VdAve1-containing isolates pathogenic on strawberry were found in both clades, in contrast to some recently published findings. On strawberry, VdAve1-containing isolates had significantly higher virulence during early infection, which diminished in significance as the infection progressed. Transformation of a virulent non-VdAve1 containing isolate, with VdAve1 was found neither to increase nor decrease virulence when inoculated on a susceptible strawberry cultivar. There are therefore virulence factors that are epistatic to VdAve1 and potentially multiple independent routes to high virulence on strawberry in V. dahliae lineages. Genome sequencing a subset of isolates across the two VCGs revealed that isolates were differentiated at the whole genome level and contained multiple changes in putative effector content, indicating that different clonal VCGs may have evolved different strategies for infecting strawberry, leading to different virulence levels in pathogenicity tests. It is therefore important to consider both clonal lineage and effector complement as the adaptive potential of each lineage will differ, even if they contain the same race determining effector.


September 22, 2019  |  

Genome sequence, assembly and characterization of two Metschnikowia fructicola strains used as biocontrol agents of postharvest diseases.

The yeast Metschnikowia fructicola was reported as an efficient biological control agent of postharvest diseases of fruits and vegetables, and it is the bases of the commercial formulated product “Shemer.” Several mechanisms of action by which M. fructicola inhibits postharvest pathogens were suggested including iron-binding compounds, induction of defense signaling genes, production of fungal cell wall degrading enzymes and relatively high amounts of superoxide anions. We assembled the whole genome sequence of two strains of M. fructicola using PacBio and Illumina shotgun sequencing technologies. Using the PacBio, a high-quality draft genome consisting of 93 contigs, with an estimated genome size of approximately 26 Mb, was obtained. Comparative analysis of M. fructicola proteins with the other three available closely related genomes revealed a shared core of homologous proteins coded by 5,776 genes. Comparing the genomes of the two M. fructicola strains using a SNP calling approach resulted in the identification of 564,302 homologous SNPs with 2,004 predicted high impact mutations. The size of the genome is exceptionally high when compared with those of available closely related organisms, and the high rate of homology among M. fructicola genes points toward a recent whole-genome duplication event as the cause of this large genome. Based on the assembled genome, sequences were annotated with a gene description and gene ontology (GO term) and clustered in functional groups. Analysis of CAZymes family genes revealed 1,145 putative genes, and transcriptomic analysis of CAZyme expression levels in M. fructicola during its interaction with either grapefruit peel tissue or Penicillium digitatum revealed a high level of CAZyme gene expression when the yeast was placed in wounded fruit tissue.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.