April 21, 2020  |  

De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China.

Acer yangbiense is a newly described critically endangered endemic maple tree confined to Yangbi County in Yunnan Province in Southwest China. It was included in a programme for rescuing the most threatened species in China, focusing on “plant species with extremely small populations (PSESP)”.We generated 64, 94, and 110 Gb of raw DNA sequences and obtained a chromosome-level genome assembly of A. yangbiense through a combination of Pacific Biosciences Single-molecule Real-time, Illumina HiSeq X, and Hi-C mapping, respectively. The final genome assembly is ~666 Mb, with 13 chromosomes covering ~97% of the genome and scaffold N50 sizes of 45 Mb. Further, BUSCO analysis recovered 95.5% complete BUSCO genes. The total number of repetitive elements account for 68.0% of the A. yangbiense genome. Genome annotation generated 28,320 protein-coding genes, assisted by a combination of prediction and transcriptome sequencing. In addition, a nearly 1:1 orthology ratio of dot plots of longer syntenic blocks revealed a similar evolutionary history between A. yangbiense and grape, indicating that the genome has not undergone a whole-genome duplication event after the core eudicot common hexaploidization.Here, we report a high-quality de novo genome assembly of A. yangbiense, the first genome for the genus Acer and the family Aceraceae. This will provide fundamental conservation genomics resources, as well as representing a new high-quality reference genome for the economically important Acer lineage and the wider order of Sapindales. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

Survey of the Bradysia odoriphaga Transcriptome Using PacBio Single-Molecule Long-Read Sequencing.

The damage caused by Bradysia odoriphaga is the main factor threatening the production of vegetables in the Liliaceae family. However, few genetic studies of B. odoriphaga have been conducted because of a lack of genomic resources. Many long-read sequencing technologies have been developed in the last decade; therefore, in this study, the transcriptome including all development stages of B. odoriphaga was sequenced for the first time by Pacific single-molecule long-read sequencing. Here, 39,129 isoforms were generated, and 35,645 were found to have annotation results when checked against sequences available in different databases. Overall, 18,473 isoforms were distributed in 25 various Clusters of Orthologous Groups, and 11,880 isoforms were categorized into 60 functional groups that belonged to the three main Gene Ontology classifications. Moreover, 30,610 isoforms were assigned into 44 functional categories belonging to six main Kyoto Encyclopedia of Genes and Genomes functional categories. Coding DNA sequence (CDS) prediction showed that 36,419 out of 39,129 isoforms were predicted to have CDS, and 4319 simple sequence repeats were detected in total. Finally, 266 insecticide resistance and metabolism-related isoforms were identified as candidate genes for further investigation of insecticide resistance and metabolism in B. odoriphaga.


April 21, 2020  |  

Complete chloroplast genome sequences of Kaempferia galanga and Kaempferia elegans: Molecular structures and comparative analysis.

Kaempferia galanga and Kaempferia elegans, which belong to the genus Kaempferia family Zingiberaceae, are used as valuable herbal medicine and ornamental plants, respectively. The chloroplast genomes have been used for molecular markers, species identification and phylogenetic studies. In this study, the complete chloroplast genome sequences of K. galanga and K. elegans are reported. Results show that the complete chloroplast genome of K. galanga is 163,811 bp long, having a quadripartite structure with large single copy (LSC) of 88,405 bp and a small single copy (SSC) of 15,812 bp separated by inverted repeats (IRs) of 29,797 bp. Similarly, the complete chloroplast genome of K. elegans is 163,555 bp long, having a quadripartite structure in which IRs of 29,773 bp length separates 88,020 bp of LSC and 15,989 bp of SSC. A total of 111 genes in K. galanga and 113 genes in K. elegans comprised 79 protein-coding genes and 4 ribosomal RNA (rRNA) genes, as well as 28 and 30 transfer RNA (tRNA) genes in K. galanga and K. elegans, respectively. The gene order, GC content and orientation of the two Kaempferia chloroplast genomes exhibited high similarity. The location and distribution of simple sequence repeats (SSRs) and long repeat sequences were determined. Eight highly variable regions between the two Kaempferia species were identified and 643 mutation events, including 536 single-nucleotide polymorphisms (SNPs) and 107 insertion/deletions (indels), were accurately located. Sequence divergences of the whole chloroplast genomes were calculated among related Zingiberaceae species. The phylogenetic analysis based on SNPs among eleven species strongly supported that K. galanga and K. elegans formed a cluster within Zingiberaceae. This study identified the unique characteristics of the entire K. galanga and K. elegans chloroplast genomes that contribute to our understanding of the chloroplast DNA evolution within Zingiberaceae species. It provides valuable information for phylogenetic analysis and species identification within genus Kaempferia.


April 21, 2020  |  

A full-length transcriptome of Sepia esculenta using a combination of single-molecule long-read (SMRT) and Illumina sequencing

As an economically important cephalopods species, wild-caught Sepia esculenta fishery has suffered a server decline due to over-fishing and ocean environmental damage. To restore this seriously declining fishery resource, we should understand the genetic foundation and molecular mechanism of spawning, reproduction and mortal of golden cuttlefish. In this study, we generated the full-length transcriptome of S. esculenta based on the total RNA of tissue samples (brain, optic gland, nidamental gland, ovary and muscle at different developmental stages) using a combination of single-molecule real-time (SMRT) and Illumina RNA-seq technology. A total of 14.16 Gb SMRT sequencing data were assembled into 94,635 transcripts. Meanwhile, 35.15 Gb Illumina HiSeq data were assembled into 177,226 non-redundant transcripts. Then, we merged SMRT and Illumina assembled data to generate a more complete/full-length S. esculenta transcriptome with 177,951 high-quality transcripts. Based on the obtained transcriptome data, total 81,459 transcripts were annotated in at least one of seven functional databases and 49,189 nucleotide sequences of coding regions were identified. Additionally, 161,327 SSRs distributed in 64,933 transcripts were identified based on SSR analysis. This full-length and high-quality transcriptome of S. esculenta can provide an important foundation for future genomic research on growth and development, reproduction and mortal of cephalopod and further recovery of this recessionary fisheries resources.


April 21, 2020  |  

Genome sequence of Jatropha curcas L., a non-edible biodiesel plant, provides a resource to improve seed-related traits.

Jatropha curcas (physic nut), a non-edible oilseed crop, represents one of the most promising alternative energy sources due to its high seed oil content, rapid growth and adaptability to various environments. We report ~339 Mbp draft whole genome sequence of J. curcas var. Chai Nat using both the PacBio and Illumina sequencing platforms. We identified and categorized differentially expressed genes related to biosynthesis of lipid and toxic compound among four stages of seed development. Triacylglycerol (TAG), the major component of seed storage oil, is mainly synthesized by phospholipid:diacylglycerol acyltransferase in Jatropha, and continuous high expression of homologs of oleosin over seed development contributes to accumulation of high level of oil in kernels by preventing the breakdown of TAG. A physical cluster of genes for diterpenoid biosynthetic enzymes, including casbene synthases highly responsible for a toxic compound, phorbol ester, in seed cake, was syntenically highly conserved between Jatropha and castor bean. Transcriptomic analysis of female and male flowers revealed the up-regulation of a dozen family of TFs in female flower. Additionally, we constructed a robust species tree enabling estimation of divergence times among nine Jatropha species and five commercial crops in Malpighiales order. Our results will help researchers and breeders increase energy efficiency of this important oil seed crop by improving yield and oil content, and eliminating toxic compound in seed cake for animal feed. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


April 21, 2020  |  

An Annotated Genome for Haliotis rufescens (Red Abalone) and Resequenced Green, Pink, Pinto, Black, and White Abalone Species.

Abalone are one of the few marine taxa where aquaculture production dominates the global market as a result of increasing demand and declining natural stocks from overexploitation and disease. To better understand abalone biology, aid in conservation efforts for endangered abalone species, and gain insight into sustainable aquaculture, we created a draft genome of the red abalone (Haliotis rufescens). The approach to this genome draft included initial assembly using raw Illumina and PacBio sequencing data with MaSuRCA, before scaffolding using sequencing data generated from Chicago library preparations with HiRise2. This assembly approach resulted in 8,371 scaffolds and total length of 1.498?Gb; the N50 was 1.895?Mb, and the longest scaffold was 13.2?Mb. Gene models were predicted, using MAKER2, from RNA-Seq data and all related expressed sequence tags and proteins from NCBI; this resulted in 57,785 genes with an average length of 8,255?bp. In addition, single nucleotide polymorphisms were called on Illumina short-sequencing reads from five other eastern Pacific abalone species: the green (H. fulgens), pink (H. corrugata), pinto (H. kamtschatkana), black (H. cracherodii), and white (H. sorenseni) abalone. Phylogenetic relationships largely follow patterns detected by previous studies based on 1,784,991 high-quality single nucleotide polymorphisms. Among the six abalone species examined, the endangered white abalone appears to harbor the lowest levels of heterozygosity. This draft genome assembly and the sequencing data provide a foundation for genome-enabled aquaculture improvement for red abalone, and for genome-guided conservation efforts for the other five species and, in particular, for the endangered white and black abalone.


April 21, 2020  |  

Microsatellite marker set for genetic diversity assessment of primitive Chitala chitala (Hamilton, 1822) derived through SMRT sequencing technology.

In present study, single molecule-real time sequencing technology was used to obtain a validated set of microsatellite markers for application in population genetics of the primitive fish, Chitala chitala. Assembly of circular consensus sequencing reads resulted into 1164 sequences which contained 2005 repetitive motifs. A total of 100 sequences were used for primer designing and amplification yielded a set of 28 validated polymorphic markers. These loci were used to genotype n?=?72 samples from three distant riverine populations of India, namely Son, Satluj and Brahmaputra, for determining intraspecific genetic variation. The microsatellite loci exhibited high level of polymorphism with PIC values ranging from 0.281 to 0.901. The genetic parameters revealed that mean heterozygosity ranged from 0.6802 to 0.6826 and the populations were found to be genetically diverse (Fst 0.03-0.06). This indicated the potential application of these microsatellite marker set that can used for stock characterization of C. chitala, in the wild. These newly developed loci were assayed for cross transferability in another notopterid fish, Notopterus notopterus.


April 21, 2020  |  

In-depth analysis of the genome of Trypanosoma evansi, an etiologic agent of surra.

Trypanosoma evansi is the causative agent of the animal trypanosomiasis surra, a disease with serious economic burden worldwide. The availability of the genome of its closely related parasite Trypanosoma brucei allows us to compare their genetic and evolutionarily shared and distinct biological features. The complete genomic sequence of the T. evansi YNB strain was obtained using a combination of genomic and transcriptomic sequencing, de novo assembly, and bioinformatic analysis. The genome size of the T. evansi YNB strain was 35.2 Mb, showing 96.59% similarity in sequence and 88.97% in scaffold alignment with T. brucei. A total of 8,617 protein-coding genes, accounting for 31% of the genome, were predicted. Approximately 1,641 alternative splicing events of 820 genes were identified, with a majority mediated by intron retention, which represented a major difference in post-transcriptional regulation between T. evansi and T. brucei. Disparities in gene copy number of the variant surface glycoprotein, expression site-associated genes, microRNAs, and RNA-binding protein were clearly observed between the two parasites. The results revealed the genomic determinants of T. evansi, which encoded specific biological characteristics that distinguished them from other related trypanosome species.


April 21, 2020  |  

The red bayberry genome and genetic basis of sex determination.

Morella rubra, red bayberry, is an economically important fruit tree in south China. Here, we assembled the first high-quality genome for both a female and a male individual of red bayberry. The genome size was 313-Mb, and 90% sequences were assembled into eight pseudo chromosome molecules, with 32 493 predicted genes. By whole-genome comparison between the female and male and association analysis with sequences of bulked and individual DNA samples from female and male, a 59-Kb region determining female was identified and located on distal end of pseudochromosome 8, which contains abundant transposable element and seven putative genes, four of them are related to sex floral development. This 59-Kb female-specific region was likely to be derived from duplication and rearrangement of paralogous genes and retained non-recombinant in the female-specific region. Sex-specific molecular markers developed from candidate genes co-segregated with sex in a genetically diverse female and male germplasm. We propose sex determination follow the ZW model of female heterogamety. The genome sequence of red bayberry provides a valuable resource for plant sex chromosome evolution and also provides important insights for molecular biology, genetics and modern breeding in Myricaceae family. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


April 21, 2020  |  

High Quality Draft Genome of Arogyapacha (Trichopus zeylanicus), an Important Medicinal Plant Endemic to Western Ghats of India.

Arogyapacha, the local name of Trichopus zeylanicus, is a rare, indigenous medicinal plant of India. This plant is famous for its traditional use as an instant energy stimulant. So far, no genomic resource is available for this important plant and hence its metabolic pathways are poorly understood. Here, we report on a high-quality draft assembly of approximately 713.4 Mb genome of T. zeylanicus, first draft genome from the genus Trichopus The assembly was generated in a hybrid approach using Illumina short-reads and Pacbio longer-reads. The total assembly comprised of 22601 scaffolds with an N50 value of 433.3 Kb. We predicted 34452 protein coding genes in T. zeylanicus genome and found that a significant portion of these predicted genes were associated with various secondary metabolite biosynthetic pathways. Comparative genome analysis revealed extensive gene collinearity between T. zeylanicus and its closely related plant species. The present genome and annotation data provide an essential resource to speed-up the research on secondary metabolism, breeding and molecular evolution of T. zeylanicus. Copyright © 2019 Chellappan et al.


April 21, 2020  |  

Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense.

Allotetraploid cotton species (Gossypium hirsutum and Gossypium barbadense) have long been cultivated worldwide for natural renewable textile fibers. The draft genome sequences of both species are available but they are highly fragmented and incomplete1-4. Here we report reference-grade genome assemblies and annotations for G. hirsutum accession Texas Marker-1 (TM-1) and G. barbadense accession 3-79 by integrating single-molecule real-time sequencing, BioNano optical mapping and high-throughput chromosome conformation capture techniques. Compared with previous assembled draft genomes1,3, these genome sequences show considerable improvements in contiguity and completeness for regions with high content of repeats such as centromeres. Comparative genomics analyses identify extensive structural variations that probably occurred after polyploidization, highlighted by large paracentric/pericentric inversions in 14 chromosomes. We constructed an introgression line population to introduce favorable chromosome segments from G. barbadense to G. hirsutum, allowing us to identify 13 quantitative trait loci associated with superior fiber quality. These resources will accelerate evolutionary and functional genomic studies in cotton and inform future breeding programs for fiber improvement.


April 21, 2020  |  

Genome sequencing and CRISPR/Cas9 gene editing of an early flowering Mini-Citrus (Fortunella hindsii).

Hongkong kumquat (Fortunella hindsii) is a wild citrus species characterized by dwarf plant height and early flowering. Here, we identified the monoembryonic F. hindsii (designated as ‘Mini-Citrus’) for the first time and constructed its selfing lines. This germplasm constitutes an ideal model for the genetic and functional genomics studies of citrus, which have been severely hindered by the long juvenility and inherent apomixes of citrus. F. hindsii showed a very short juvenile period (~8 months) and stable monoembryonic phenotype under cultivation. We report the first de novo assembled 373.6 Mb genome sequences (Contig-N50 2.2 Mb and Scaffold-N50 5.2 Mb) for F. hindsii. In total, 32 257 protein-coding genes were annotated, 96.9% of which had homologues in other eight Citrinae species. The phylogenomic analysis revealed a close relationship of F. hindsii with cultivated citrus varieties, especially with mandarin. Furthermore, the CRISPR/Cas9 system was demonstrated to be an efficient strategy to generate target mutagenesis on F. hindsii. The modifications of target genes in the CRISPR-modified F. hindsii were predominantly 1-bp insertions or small deletions. This genetic transformation system based on F. hindsii could shorten the whole process from explant to T1 mutant to about 15 months. Overall, due to its short juvenility, monoembryony, close genetic background to cultivated citrus and applicability of CRISPR, F. hindsii shows unprecedented potentials to be used as a model species for citrus research. © 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


April 21, 2020  |  

Mutation of a bHLH transcription factor allowed almond domestication.

Wild almond species accumulate the bitter and toxic cyanogenic diglucoside amygdalin. Almond domestication was enabled by the selection of genotypes harboring sweet kernels. We report the completion of the almond reference genome. Map-based cloning using an F1 population segregating for kernel taste led to the identification of a 46-kilobase gene cluster encoding five basic helix-loop-helix transcription factors, bHLH1 to bHLH5. Functional characterization demonstrated that bHLH2 controls transcription of the P450 monooxygenase-encoding genes PdCYP79D16 and PdCYP71AN24, which are involved in the amygdalin biosynthetic pathway. A nonsynonymous point mutation (Leu to Phe) in the dimerization domain of bHLH2 prevents transcription of the two cytochrome P450 genes, resulting in the sweet kernel trait. Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


April 21, 2020  |  

A global survey of full-length transcriptome of Ginkgo biloba reveals transcript variants involved in flavonoid biosynthesis

Ginkgo biloba, which contains flavonoids as bioactive components, is widely used in traditional Chinese medicine. Increasing the flavonoid production of medicinal plants through genetic engineering generally focuses on the key genes involved in flavonoid biosynthesis. However, the molecular mechanisms underlying such biosynthesis are not yet well understood. To understand these mechanisms, a combination of second-generation sequencing (SGS) and single-molecule real-time (SMRT) sequencing was applied to G. biloba. Eight tissues were sampled for SMRT sequencing to generate a high-quality, full-length transcriptome database. From 23.36 Gb clean reads, 12,954 alternative polyadenylation events, 12,290 alternative splicing events, 929 fusion transcripts, 2,286 novel transcripts, and 1,270 lncRNAs were predicted by removing redundant reads. Further studies reveal that 7 AS, 5 lncRNA, and 6 fusion gene events were identified in flavonoid biosynthesis. A total of 12 gene modules were revealed to be involved in flavonoid metabolism structural genes and transcription factors by constructing co-expression networks. Weighted gene coexpression network analysis (WGCNA) analysis reveals that some hub genes operate during the biosynthesis by identifying transcription factors (TFs) and structure genes. Seven key hub genes were also identified by analyzing the correlation between gene expression level and flavonoids content. The results highlight the importance of SMRT sequencing of the full-length transcriptome in improving genome annotation and elucidating the gene regulation of flavonoid biosynthesis in G. biloba by providing a comprehensive set of reference transcripts.


April 21, 2020  |  

Wild relatives of maize

Crop domestication changed the course of human evolution, and domestication of maize (Zea mays L. subspecies mays), today the world’s most important crop, enabled civilizations to flourish and has played a major role in shaping the world we know today. Archaeological and ethnobotanical research help us understand the development of the cultures and the movements of the peoples who carried maize to new areas where it continued to adapt. Ancient remains of maize cobs and kernels have been found in the place of domestication, the Balsas River Valley (~9,000 years before present era), and the cultivation center, the Tehuacan Valley (~5,000 years before present era), and have been used to study the process of domestication. Paleogenomic data showed that some of the genes controlling the stem and inflorescence architecture were comparable to modern maize, while other genes controlling ear shattering and starch biosynthesis retain high levels of variability, similar to those found in the wild relative teosinte. These results indicate that the domestication process was both gradual and complex, where different genetic loci were selected at different points in time, and that the transformation of teosinte to maize was completed in the last 5,000 years. Mesoamerican native cultures domesticated teosinte and developed maize from a 6 cm long, popping-kernel ear to what we now recognize as modern maize with its wide variety in ear size, kernel texture, color, size, and adequacy for diverse uses and also invented nixtamalization, a process key to maximizing its nutrition. Used directly for human and animal consumption, processed food products, bioenergy, and many cultural applications, it is now grown on six of the world’s seven continents. The study of its evolution and domestication from the wild grass teosinte helps us understand the nature of genetic diversity of maize and its wild relatives and gene expression. Genetic barriers to direct use of teosinte or Tripsacum in maize breeding have challenged our ability to identify valuable genes and traits, let alone incorporate them into elite, modern varieties. Genomic information and newer genetic technologies will facilitate the use of wild relatives in crop improvement; hence it is more important than ever to ensure their conservation and availability, fundamental to future food security. In situ conservation efforts dedicated to preserving remnant populations of wild relatives in Mexico are key to safeguarding the genetic diversity of maize and its genepool, as well as enabling these species to continue to adapt to dynamic climate and environmental changes. Genebank ex situ efforts are crucial to securely maintain collected wild relative resources and to provide them for gene discovery and other research efforts.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.