June 1, 2021  |  

Developments in PacBio metagenome sequencing: Shotgun whole genomes and full-length 16S.

The assembly of metagenomes is dramatically improved by the long read lengths of SMRT Sequencing. This is demonstrated in an experimental design to sequence a mock community from the Human Microbiome Project, and assemble the data using the hierarchical genome assembly process (HGAP) at Pacific Biosciences. Results of this analysis are promising, and display much improved contiguity in the assembly of the mock community as compared to publicly available short-read data sets and assemblies. Additionally, the use of base modification information to make further associations between contigs provides additional data to improve assemblies, and to distinguish between members within a microbial community. The epigenetic approach is a novel validation method unique to SMRT Sequencing. In addition to whole-genome shotgun sequencing, SMRT Sequencing also offers improved classification resolution and reliability of metagenomic and microbiome samples by the full-length sequencing of 16S rRNA (~1500 bases long). Microbial communities can be detected at the species level in some cases, rather than being limited to the genus taxonomic classification as constrained by short-read technologies. The performance of SMRT Sequencing for these metagenomic samples achieved >99% predicted concordance to reference sequences in cecum, soil, water, and mock control investigations for bacterial 16S. Community samples are estimated to contain from 2.3 and up to 15 times as many species with abundance levels as low as 0.05% compared to the identification of phyla groups.


June 1, 2021  |  

Old school/new school genome sequencing: One step backward — a quantum leap forward.

As the costs for genome sequencing have decreased the number of “genome” sequences have increased at a rapid pace. Unfortunately, the quality and completeness of these so–called “genome” sequences have suffered enormously. We prefer to call such genome assemblies as “gene assembly space” (GAS). We believe it is important to distinguish GAS assemblies from reference genome assemblies (RGAs) as all subsequent research that depends on accurate genome assemblies can be highly compromised if the only assembly available is a GAS assembly.


April 21, 2020  |  

The complete genome sequence and comparative genome analysis of the multi-drug resistant food-borne pathogen Bacillus cereus.

Bacillus cereus is an opportunistic human pathogen causing food-borne gastrointestinal infections and non-gastrointestinal infections worldwide. The strain B. cereus FORC_013 was isolated from fried eel. Its genome was completely sequenced by PacBio technology, analyzed and compared with other complete genome sequences of Bacillus to elucidate the distinct pathogenic features of the strain isolated in South Korea. Genomic analysis revealed pathogenesis and host immune evasion-associated genes encoding tissue-destructive exoenzymes, and pore-forming toxins. In particular, tissue-destructive (hemolysin BL, nonhaemolytic enterotoxins) and cytolytic proteins (cytolysin) were observed in the genome, which damage the plasma membrane of the epithelial cells of the small intestine causing diarrhea in humans. Capsule biosynthesis gene found in both chromosome and plasmid, which might be responsible for protecting the pathogen from the host cell immune defense system after host cell invasion. Additionally, multidrug resistance operon and efflux pumps were identified in the genome, which play a prominent role in multi-antibiotic resistance. Comparative phylogenetic tree analysis of the strain FORC_013 and other B. cereus strains revealed that the closest strains are ATCC 14579 and B4264. This genome data can be used to identify virulence factors that can be applied for the development of novel biomarkers for the rapid detection of this pathogen in foods.Copyright © 2018. Published by Elsevier Inc.


April 21, 2020  |  

Tracking short-term changes in the genetic diversity and antimicrobial resistance of OXA-232-producing Klebsiella pneumoniae ST14 in clinical settings.

To track stepwise changes in genetic diversity and antimicrobial resistance in rapidly evolving OXA-232-producing Klebsiella pneumoniae ST14, an emerging carbapenem-resistant high-risk clone, in clinical settings.Twenty-six K. pneumoniae ST14 isolates were collected by the Korean Nationwide Surveillance of Antimicrobial Resistance system over the course of 1 year. Isolates were subjected to whole-genome sequencing and MIC determinations using 33 antibiotics from 14 classes.Single-nucleotide polymorphism (SNP) typing identified 72 unique SNP sites spanning the chromosomes of the isolates, dividing them into three clusters (I, II and III). The initial isolate possessed two plasmids with 18 antibiotic-resistance genes, including blaOXA-232, and exhibited resistance to 11 antibiotic classes. Four other plasmids containing 12 different resistance genes, including blaCTX-M-15 and strA/B, were introduced over time, providing additional resistance to aztreonam and streptomycin. Moreover, chromosomal integration of insertion sequence Ecp1-blaCTX-M-15 mediated the inactivation of mgrB responsible for colistin resistance in four isolates from cluster III. To the best of our knowledge, this is the first description of K. pneumoniae ST14 resistant to both carbapenem and colistin in South Korea. Furthermore, although some acquired genes were lost over time, the retention of 12 resistance genes and inactivation of mgrB provided resistance to 13 classes of antibiotics.We describe stepwise changes in OXA-232-producing K. pneumoniae ST14 in vivo over time in terms of antimicrobial resistance. Our findings contribute to our understanding of the evolution of emerging high-risk K. pneumoniae clones and provide reference data for future outbreaks.Copyright © 2019 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Evolution of a 72-kb cointegrant, conjugative multiresistance plasmid from early community-associated methicillin-resistant Staphylococcus aureus isolates.

Horizontal transfer of plasmids encoding antimicrobial-resistance and virulence determinants has been instrumental in Staphylococcus aureus evolution, including the emergence of community-associated methicillin-resistant S. aureus (CA-MRSA). In the early 1990s the first CA-MRSA isolated in Western Australia (WA), WA-5, encoded cadmium, tetracycline and penicillin-resistance genes on plasmid pWBG753 (~30 kb). WA-5 and pWBG753 appeared only briefly in WA, however, fusidic-acid-resistance plasmids related to pWBG753 were also present in the first European CA-MRSA at the time. Here we characterized a 72-kb conjugative plasmid pWBG731 present in multiresistant WA-5-like clones from the same period. pWBG731 was a cointegrant formed from pWBG753 and a pWBG749-family conjugative plasmid. pWBG731 carried mupirocin, trimethoprim, cadmium and penicillin-resistance genes. The stepwise evolution of pWBG731 likely occurred through the combined actions of IS257, IS257-dependent miniature inverted-repeat transposable elements (MITEs) and the BinL resolution system of the ß-lactamase transposon Tn552 An evolutionary intermediate ~42-kb non-conjugative plasmid pWBG715, possessed the same resistance genes as pWBG731 but retained an integrated copy of the small tetracycline-resistance plasmid pT181. IS257 likely facilitated replacement of pT181 with conjugation genes on pWBG731, thus enabling autonomous transfer. Like conjugative plasmid pWBG749, pWBG731 also mobilized non-conjugative plasmids carrying oriT mimics. It seems likely that pWBG731 represents the product of multiple recombination events between the WA-5 pWBG753 plasmid and other mobile genetic elements present in indigenous CA-MSSA. The molecular evolution of pWBG731 saliently illustrates how diverse mobile genetic elements can together facilitate rapid accrual and horizontal dissemination of multiresistance in S. aureus CA-MRSA.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

An Outbreak of KPC-Producing Klebsiella pneumoniae Linked with an Index Case of Community-Acquired KPC-Producing Isolate: Epidemiological Investigation and Whole Genome Sequencing Analysis.

Aims: A hospital outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae (KPN) linked with an index case of community-acquired infection occurred in an urban tertiary care hospital in Seoul, South Korea. Therefore, we performed an outbreak investigation and whole genome sequencing (WGS) analysis to trace the outbreak and investigate the molecular characteristics of the isolates. Results: From October 2014 to January 2015, we identified a cluster of three patients in the neurosurgery ward with sputum cultures positive for carbapenem-resistant KPN. An epidemiological investigation, including pulsed-field gel electrophoresis analysis was performed to trace the origins of this outbreak. The index patient’s infection was community acquired. Active surveillance cultures using perirectal swabbing from exposed patients, identified one additional patient with KPC-producing KPN colonization. WGS analyses using PacBio RSII instruments were performed for four linked isolates. WGS revealed a genetic linkage of the four isolates belonging to the same sequence type (ST307). All KPN isolates harbored conjugative resistance plasmids, which has blaKPC-2 carbapenemase genes contained within the Tn4401 “a” isoform and other resistance genes. However, WGS showed only three isolates among four KPC-producing KPN were originated from a common origin. Conclusions: This report demonstrates the challenge that KPC-2-producing KPN with the conjugative resistance plasmid may spread not only in hospitals but also in community, and WGS can help to accurately characterize the outbreak.


April 21, 2020  |  

Cupriavidus sp. strain Ni-2 resistant to high concentration of nickel and its genes responsible for the tolerance by genome comparison.

The widespread use of metals influenced many researchers to examine the relationship between heavy metal toxicity and bacterial resistance. In this study, we have inoculated heavy metal-contaminated soil from Janghang region of South Korea in the nickel-containing media (20 mM Ni2+) for the enrichment. Among dozens of the colonies acquired from the several transfers and serial dilutions with the same concentrations of Ni, the strain Ni-2 was chosen for further studies. The isolates were identified for their phylogenetic affiliations using 16S rRNA gene analysis. The strain Ni-2 was close to Cupriavidus metallidurans and was found to be resistant to antibiotics of vancomycin, erythromycin, chloramphenicol, ampicillin, gentamicin, streptomycin, and kanamycin by disk diffusion method. Of the isolated strains, Ni-2 was sequenced for the whole genome, since the Ni-resistance seemed to be better than the other strains. From the genome sequence we have found that there was a total of 89 metal-resistance-related genes including 11 Ni-resistance genes, 41 heavy metal (As, Cd, Zn, Hg, Cu, and Co)-resistance genes, 22 cation-efflux genes, 4 metal pumping ATPase genes, and 11 metal transporter genes.


April 21, 2020  |  

Rapid evolution of a-gliadin gene family revealed by analyzing Gli-2 locus regions of wild emmer wheat.

a-Gliadins are a major group of gluten proteins in wheat flour that contribute to the end-use properties for food processing and contain major immunogenic epitopes that can cause serious health-related issues including celiac disease (CD). a-Gliadins are also the youngest group of gluten proteins and are encoded by a large gene family. The majority of the gene family members evolved independently in the A, B, and D genomes of different wheat species after their separation from a common ancestral species. To gain insights into the origin and evolution of these complex genes, the genomic regions of the Gli-2 loci encoding a-gliadins were characterized from the tetraploid wild emmer, a progenitor of hexaploid bread wheat that contributed the AABB genomes. Genomic sequences of Gli-2 locus regions for the wild emmer A and B genomes were first reconstructed using the genome sequence scaffolds along with optical genome maps. A total of 24 and 16 a-gliadin genes were identified for the A and B genome regions, respectively. a-Gliadin pseudogene frequencies of 86% for the A genome and 69% for the B genome were primarily caused by C to T substitutions in the highly abundant glutamine codons, resulting in the generation of premature stop codons. Comparison with the homologous regions from the hexaploid wheat cv. Chinese Spring indicated considerable sequence divergence of the two A genomes at the genomic level. In comparison, conserved regions between the two B genomes were identified that included a-gliadin pseudogenes containing shared nested TE insertions. Analyses of the genomic organization and phylogenetic tree reconstruction indicate that although orthologous gene pairs derived from speciation were present, large portions of a-gliadin genes were likely derived from differential gene duplications or deletions after the separation of the homologous wheat genomes ~?0.5 MYA. The higher number of full-length intact a-gliadin genes in hexaploid wheat than that in wild emmer suggests that human selection through domestication might have an impact on a-gliadin evolution. Our study provides insights into the rapid and dynamic evolution of genomic regions harboring the a-gliadin genes in wheat.


April 21, 2020  |  

Complete Genome Sequence of Kocuria indica CE7, Isolated from Human Skin.

Here, we report the complete genome sequence of Kocuria indica CE7, isolated from human skin. This strain possesses a 2,809-kbp chromosome and a 32-kbp plasmid with 2,507 coding sequences. In particular, the genome contains multiple genes potentially involved in adaptations in pH homeostasis and salt tolerance.Copyright © 2019 Lee et al.


April 21, 2020  |  

Complete Genome Sequence of Leuconostoc kimchii Strain NKJ218, Isolated from Homemade Kimchi.

Leuconostoc kimchii strain NKJ218 was isolated from homemade kimchi in South Korea. The whole genome was sequenced using the PacBio RS II and Illumina NovoSeq 6000 platforms. Here, we report a genome sequence of strain NKJ218, which consists of a 1.9-Mbp chromosome and three plasmid contigs. A total of 2,005 coding sequences (CDS) were predicted, including 1,881 protein-coding sequences.Copyright © 2019 Jung et al.


April 21, 2020  |  

Genomic Islands in the Full-Genome Sequence of an NAD-Hemin-Independent Avibacterium paragallinarum Strain Isolated from Peru.

Here, we report the full-genome sequence of an NAD-hemin-independent Avibacterium paragallinarum serovar C-2 strain, FARPER-174, isolated from layer hens in Peru. This genome contained 12 potential genomic islands that include ribosomal protein-coding genes, a nadR gene, hemocin-coding genes, sequences of fagos, an rtx operon, and drug resistance genes. Copyright © 2019 Tataje-Lavanda et al.


April 21, 2020  |  

Resequencing the Genome of Malassezia restricta Strain KCTC 27527.

The draft genome sequence of Malassezia restricta KCTC 27527, a clinical isolate from a patient with dandruff, was previously reported. Using the PacBio Sequel platform, we completed and reannotated the genome of M. restricta KCTC 27527 for a better understanding of the genome of this fungus.Copyright © 2019 Cho et al.


April 21, 2020  |  

Increased prevalence of Escherichia coli strains from food carrying blaNDM and mcr-1-bearing plasmids that structurally resemble those of clinical strains, China, 2015 to 2017.

Introduction: Emergence of resistance determinants of blaNDM and mcr-1 has undermined the antimicrobial effectiveness of the last line drugs carbapenems and colistin. Aim: This work aimed to assess the prevalence of blaNDM and mcr-1 in E. coli strains collected from food in Shenzhen, China, during the period 2015 to 2017. Methods: Multidrug-resistant E. coli strains were isolated from food samples. Plasmids encoding mcr-1 or blaNDM genes were characterised and compared with plasmids found in clinical isolates.ResultsAmong 1,166 non-repeated cephalosporin-resistant E. coli strains isolated from 2,147 food samples, 390 and 42, respectively, were resistant to colistin and meropenem, with five strains being resistant to both agents. The rate of resistance to colistin increased significantly (p?


April 21, 2020  |  

A high-quality genome assembly from a single, field-collected spotted lanternfly (Lycorma delicatula) using the PacBio Sequel II system

Background A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens to damage economically important crop plants in the region. Results The DNA from 1 individual was used to make 1 standard, size-selected library with an average DNA fragment size of ~20 kb. The library was run on 1 Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing ~36× coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Furthermore, it was possible to segregate more than half of the diploid genome into the 2 separate haplotypes. The assembly also recovered 2 microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. Conclusions We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.


April 21, 2020  |  

Mitochondrial genome characterization of Melipona bicolor: Insights from the control region and gene expression data.

The stingless bee Melipona bicolor is the only bee in which true polygyny occurs. Its mitochondrial genome was first sequenced in 2008, but it was incomplete and no information about its transcription was known. We combined short and long reads of M. bicolor DNA with RNASeq data to obtain insights about mitochondrial evolution and gene expression in bees. The complete genome has 15,001?bp, including a control region of 255?bp that contains all conserved structures described in honeybees with the highest AT content reported so far for bees (98.1%), displaying a compact but functional region. Gene expression control is similar to other insects however unusual patterns of expression may suggest the existence of different isoforms for the mitochondrially encoded 12S rRNA. Results reveal unique and shared features of the mitochondrial genome in terms of sequence evolution and gene expression making M. bicolor an interesting model to study mitochondrial genomic evolution. Copyright © 2019 Elsevier B.V. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.