June 1, 2021  |  

Rapid full-length Iso-Seq cDNA sequencing of rice mRNA to facilitate annotation and identify splice-site variation.

PacBio’s new Iso-Seq technology allows for rapid generation of full-length cDNA sequences without the need for assembly steps. The technology was tested on leaf mRNA from two model O. sativa ssp. indica cultivars – Minghui 63 and Zhenshan 97. Even though each transcriptome was not exhaustively sequenced, several thousand isoforms described genes over a wide size range, most of which are not present in any currently available FL cDNA collection. In addition, the lack of an assembly requirement provides direct and immediate access to complete mRNA sequences and rapid unraveling of biological novelties.


June 1, 2021  |  

Comparative genome analysis of Clavibacter michiganensis subsp. michiganensis strains provides insights into genetic diversity and virulence.

Clavibacter michiganensis subsp. michiganensis (Cmm) is a gram positive actinomycete, causing bacterial canker of tomato (Solanum lycopersicum) a disease that can cause significant losses in tomato production. In this study, we determined the complete genome sequence of 13 California Cmm strains and one saprophytic Clavibacter strain using a combination of Ilumina and PacBio sequencing. The California Cmm strains have genome size (3.2 -3.3 mb) similar to the reference strain NCPPB382 (3.3 mb) with =98% sequence identity. Cmm strains from California share =92% genes (8-10% are noble genes) with the reference Cmm strain NCPPB382. Despite this similarity, we detected significant alternatives in California strains with respect to plasmid number, plasmid composition, and genomic island presence indicating acquisition of unique mechanisms controlling virulence. Plasmids pCM1 and pCM2, that were previously demonstrated to be required for NCPPB382 virulence, also differ in their presence and gene content across Cmm strains. pCM2 is absent in some Cmm strains and that still retain virulence in tomato. Saprophytic Clavibacter possess a novel plasmid, pSCM, and lacks the majority of characterized virulence factors. Genome sequence information was also used to design specific and sensitive primer pairs for Cmm detection. A mechanistic understanding of how genomic changes have impacted Cmm virulence and survival across diverse strains will be necessary for developing a robust disease control strategies for bacterial canker of tomato.


June 1, 2021  |  

Genome assembly strategies of the recent polyploid, Coffea arabica.

Arabica coffee, revered for its taste and aroma, has a complex genome. It is an allotetraploid (2n=4x=44) with a genome size of approximately 1.3 Gb, derived from the recent (< 0.6 Mya) hybridization of two diploid progenitors (2n=2x=22), C. canephora (710 Mb) and C. eugenioides (670 Mb). Both parental species diverged recently (< 4.2Mya) and their genomes are highly homologous. To facilitate assembly, a dihaploid plant was chosen for sequencing. Initial genome assembly attempts with short read data produced an assembly covering 1,031 Mb of the C. arabica genome with a contig L50 of 9kb. By implementation of long read PacBio at greater than 50x coverage and cutting-edge PacBio software, a de novo PacBio-only genome assembly was constructed that covers 1,042 Mb of the genome with an L50 of 267 kb. The two assemblies were assessed and compared to determine gene content, chimeric regions, and the ability to separate the parental genomes. A genetic map that contains 600 SSRs is being used for anchoring the contigs and improve the sub-genome differentiation together with the search of sub-genome specific SNPs. PacBio transcriptome sequencing is currently being added to finalize gene annotation of the polished assembly. The finished genome assembly will be used to guide re-sequencing assemblies of parental genomes (C. canephora and C. eugenioides) as well as a template for GBS analysis and whole genome re-sequencing of a set of C. arabica accessions representative of the species diversity. The obtained data will provide powerful genomic tools to enable more efficient coffee breeding strategies for this crop, which is highly susceptible to climate change and is the main source of income for millions of small farmers in producing countries.


June 1, 2021  |  

Resources for advanced bioinformaticians working in plant and animal genomes with SMRT Sequencing.

Significant advances in bioinformatics tool development have been made to more efficiently leverage and deliver high-quality genome assemblies with PacBio long-read data. Current data throughput of SMRT Sequencing delivers average read lengths ranging from 10-15 kb with the longest reads exceeding 40 kb. This has resulted in consistent demonstration of a minimum 10-fold improvement in genome assemblies with contig N50 in the megabase range compared to assemblies generated using only short- read technologies. This poster highlights recent advances and resources available for advanced bioinformaticians and developers interested in the current state-of-the-art large genome solutions available as open-source code from PacBio and third-party solutions, including HGAP, MHAP, and ECTools. Resources and tools available on GitHub are reviewed, as well as datasets representing major model research organisms made publically available for community evaluation or interested developers.


June 1, 2021  |  

Multiplexing human HLA class I & II genotyping with DNA barcode adapters for high throughput research.

Human MHC class I genes HLA-A, -B, -C, and class II genes HLA-DR, -DP and -DQ, play a critical role in the immune system as major factors responsible for organ transplant rejection. The have a direct or linkage-based association with several diseases, including cancer and autoimmune diseases, and are important targets for clinical and drug sensitivity research. HLA genes are also highly polymorphic and their diversity originates from exonic combinations as well as recombination events. A large number of new alleles are expected to be encountered if these genes are sequenced through the UTRs. Thus allele-level resolution is strongly preferred when sequencing HLA genes. Pacific Biosciences has developed a method to sequence the HLA genes in their entirety within the span of a single read taking advantage of long read lengths (average >10 kb) facilitated by SMRT technology. A highly accurate consensus sequence (=99.999 or QV50 demonstrated) is generated for each allele in a de novo fashion by our SMRT Analysis software. In the present work, we have combined this imputation-free, fully phased, allele-specific consensus sequence generation workflow and a newly developed DNA-barcode-tagged SMRTbell sample preparation approach to multiplex 96 individual samples for sequencing all of the HLA class I and II genes. Commercially available NGS-go reagents for full-length HLA class I and relevant exons of class II genes were amplified for hi-resolution HLA sequencing. The 96 samples included 72 that are part of UCLA reference panel and had pre-typing information available for 2 fields, based on gold standard SBT methods. SMRTbell adapters with 16 bp barcode tags were ligated to long amplicons in symmetric pairing. PacBio sequencing was highly effective in generating accurate, phased sequences of full-length alleles of HLA genes. In this work we demonstrate scalability of HLA sequencing using off the shelf assays for research applications to find biological significance in full-length sequencing.


June 1, 2021  |  

Sequencing complex mixtures of HIV-1 genomes with single-base resolution.

A large number of distinct HIV-1 genomes can be present in a single clinical sample from a patient chronically infected with HIV-1. We examined samples containing complex mixtures of near-full-length HIV-1 genomes. Single molecules were sequenced as near-full-length (9.6 kb) amplicons directly from PCR products without shearing. Mathematical analysis techniques deconvolved the complex mixture of reads into estimates of distinct near-full-length viral genomes with their relative abundances. We correctly estimated the originating genomes to single-base resolution along with their relative abundances for mixtures where the truth was known exactly by independent sequencing methods. Correct estimates were made even when genomes diverged by a single base. Minor abundances of 5% were reliably detected. SMRT Sequencing data contained near-full-length continuous reads for each sample including some runs with greater than 10,000 near-full-length-genome reads in a three-hour collection time. SMRT Sequencing yields long- read sequencing results from individual DNA molecules with a rapid time-to-result. The single-molecule, full-length nature of the sequencing method allows us to estimate variant subspecies and relative abundances even from samples containing complex mixtures of genomes that differ by single bases. These results open the possibility of cost-effective full-genome sequencing of HIV-1 in mixed populations for applications such as incorporated-HIV-1 screening. In screening, genomes can differ by one to many thousands of bases and the ability to measure them can help scientifically inform treatment strategies.


June 1, 2021  |  

Toward comprehensive genomics analysis with de novo assembly.

Whole genome sequencing can provide comprehensive information important for determining the biochemical and genetic nature of all elements inside a genome. The high-quality genome references produced from past genome projects and advances in short-read sequencing technologies have enabled quick and cheap analysis for simple variants. However even with the focus on genome-wide resequencing for SNPs, the heritability of more than 50% of human diseases remains elusive. For non-human organisms, high-contiguity references are deficient, limiting the analysis of genomic features. The long and unbiased reads from single molecule, real-time (SMRT) Sequencing and new de novo assembly approaches have demonstrated the ability to detect more complicated variants and chromosome-level phasing. Moreover, with the recent advance of bioinformatics algorithms and tools, the computation tasks for completing high-quality de novo assembly of large genomes becomes feasible with commodity hardware. Ongoing development in sequencing technologies and bioinformatics will likely lead to routine generation of high-quality reference assemblies in the future. We discuss the current state of art and the challenges in bioinformatics toward such a goal. More specifically, explicit examples of pragmatic computational requirements for assembling mammalian-size genomes and algorithms suitable for processing diploid genomes are discussed.


June 1, 2021  |  

High-accuracy, single-base resolution of near-full-length HIV genomes.

Background: The HIV-1 proviral reservoir is incredibly stable, even while undergoing antiretroviral therapy, and is seen as the major barrier to HIV-1 eradication. Identifying and comprehensively characterizing this reservoir will be critical to achieving an HIV cure. Historically, this has been a tedious and labor intensive process, requiring high-replicate single-genome amplification reactions, or overlapping amplicons that are then reconstructed into full-length genomes by algorithmic imputation. Here, we present a deep sequencing and analysis method able to determine the exact identity and relative abundances of near-full-length HIV genomes from samples containing mixtures of genomes without shearing or complex bioinformatic reconstruction. Methods: We generated clonal near-full-length (~9 kb) amplicons derived from single genome amplification (SGA) of primary proviral isolates or PCR of well-documented control strains. These clonal products were mixed at various abundances and sequenced as near-full-length (~9 kb) amplicons without shearing. Each mixture yielded many near-full-length HIV-1 reads. Mathematical analysis techniques resolved the complex mixture of reads into estimates of distinct near-full-length viral genomes with their relative abundances. Results: Single Molecule, Real-Time (SMRT) Sequencing data contained near-full-length (~9 kb) continuous reads for each sample including some runs with greater than 10,000 near-full-length-genome reads in a three-hour sequencing run. Our methods correctly recapitulated exactly the originating genomes at a single-base resolution and their relative abundances in both mixtures of clonal controls and SGAs, and these results were validated using independent sequencing methods. Correct resolution was achieved even when genomes differed only by a single base. Minor abundances of 5% were reliably detected. Conclusions: SMRT Sequencing yields long-read sequencing results from individual DNA molecules, a rapid time-to-result. The single-molecule, full-length nature of this sequencing method allows us to estimate variant subspecies and relative abundances with single-nucleotide resolution. This method allows for reference-agnostic and cost-effective full-genome sequencing of HIV-1, which could both further our understanding of latent infection and develop novel and improved tools for quantifying HIV provirus, which will be critical to cure HIV.


June 1, 2021  |  

Full-length isoform sequencing of the human MCF-7 cell line using PacBio long reads.

While advances in RNA sequencing methods have accelerated our understanding of the human transcriptome, isoform discovery remains a challenge because short read lengths require complicated assembly algorithms to infer the contiguity of full-length transcripts. With PacBio’s long reads, one can now sequence full-length transcript isoforms up to 10 kb. The PacBio Iso- Seq protocol produces reads that originate from independent observations of single molecules, meaning no assembly is needed. Here, we sequenced the transcriptome of the human MCF-7 breast cancer cell line using the Clontech SMARTer® cDNA preparation kit and the PacBio RS II. Using PacBio Iso-Seq bioinformatics software, we obtained 55,770 unique, full-length, high-quality transcript sequences that were subsequently mapped back to the human genome with = 99% accuracy. In addition, we identified both known and novel fusion transcripts. To assess our results, we compared the predicted ORFs from the PacBio data against a published mass spectrometry dataset from the same cell line. 84% of the proteins identified with the Uniprot protein database were recovered by the PacBio predictions. Notably, 251 peptides solely matched to the PacBio generated ORFs and were entirely novel, including abundant cases of single amino acid polymorphisms, cassette exon splicing and potential alternative protein coding frames.


June 1, 2021  |  

Analysis of full-length metagenomic 16S genes by Single Molecule, Real-Time Sequencing

High-throughput sequencing of the complete 16S rRNA gene has become a valuable tool for characterizing microbial communities. However, the short reads produced by second-generation sequencing cannot provide taxonomic classification below the genus level. In this study, we demonstrate the capability of PacBio’s Single Molecule, Real-Time (SMRT) Sequencing to generate community profiles using mock microbial community samples from BEI Resources. We also evaluate multiplexing capabilities using PacBio barcodes on pooled samples comprising heterogeneous 16S amplicon populations representing soil, fecal, and mock communities.


June 1, 2021  |  

The “Art” of shotgun sequencing

2015 SMRT Informatics Developers Conference Presentation Slides: Jason Chin of PacBio highlighted some of the challenges for shotgun assembly while suggesting some potential solutions to obtain diploid assemblies, including the FALCON method.


June 1, 2021  |  

Making the most of long reads: towards efficient assemblers for reference quality, de novo reconstructions

2015 SMRT Informatics Developers Conference Presentation Slides: Gene Myers, Ph.D., Founding Director, Systems Biology Center, Max Planck Institute delivered the keynote presentation. He talked about building efficient assemblers, the importance of random error distribution in sequencing data, and resolving tricky repeats with very long reads. He also encouraged developers to release assembly modules openly, and noted that data should be straightforward to parse since sharing data interfaces is easier than sharing software interfaces.


June 1, 2021  |  

Introduction to SMRT informatics developers conference

2015 SMRT Informatics Developers Conference Presentation Slides: Kevin Corcoran of PacBio provided a brief review of community involvement in the development of analysis tools and showed a preview of upcoming sample preparation, chemistry and informatics improvements.


June 1, 2021  |  

Full-length sequencing of HLA class I genes of more than 1000 samples provides deep insights into sequence variability

Aim: The vast majority of donor typing relies on sequencing exons 2 and 3 of HLA class I genes (HLA-A, -B, -C). With such an approach certain allele combinations do not result in the anticipated “high resolution” (G-code) typing, due to the lack of exon-phasing information. To resolve ambiguous typing results for a haplotype frequency project, we established a whole gene sequencing approach for HLA class I, facilitating also an estimation of the degree of sequence variability outside the commonly sequenced exons. Methods: Primers were developed flanking the UTR regions resulting in similar amplicon lengths of 4.2-4.4 kb. Using a 4-primer approach, secondary primers containing barcodes were combined with the gene specific primers to obtain barcoded full-gene amplicons in a single amplification step. Amplicons were pooled, purified, and ligated to SMRT bells (i.e. annealing points for sequencing primers) following standard protocols from Pacific Biosciences. Taking advantage of the SMRT chemistry, pools of 48-72 amplicons were sequenced full length and phased in single runs on a Pacific Biosciences RSII instrument. Demultiplexing was achieved using the SMRT portal. Sequence analysis was performed using NGSengine software (GenDx). Results: We successfully performed full-length gene sequencing of 1003 samples, harboring ambiguous typings of either HLA-A (n=46), HLA-B (n=304) or HLA-C (n=653). Despite the high per-read raw error rates typical for SMRT sequencing (~15%) the consensus sequence proved highly reliable. All consensus sequences for exons 2 and 3 were in full accordance with their MiSeq-derived sequences. Unambiguous allelic resolution was achieved for all samples. We observed novel intronic, exonic as well as UTR sequence variations for many of the alleles covered by our data set. This included sequences of 600 individuals with HLA-C*07:01/C*07:02 genotype revealing the extent of sequence variation outside the exons 2 and 3. Conclusion: Here we present a whole gene amplification and sequencing approach for HLA class I genes. The maturity of this approach was demonstrated by sequencing more than 1000 samples, achieving fully phased allelic sequences. Extensive sequencing of one common allele combination hints at the yet to discover diversity of the HLA system outside the commonly analyzed exons.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.