X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, August 27, 2020

Industrial Biotechnology Brochure: Fuel biotech discovery with confident characterization of microbes and their communities

Industrial microbiologists rely on comprehensive genomic information to identify and develop complex biological products. Single Molecule, Real-Time (SMRT) Sequencing delivers a more complete view of individual organisms and microbial communities, fueling research for modern pharmaceutical discovery, environmental remediation, chemical commodity production, and agriculture products.

Read More »

Tuesday, April 21, 2020

Towards PacBio-based pan-eukaryote metabarcoding using full-length ITS sequences.

Development of high-throughput sequencing techniques have greatly benefited our understanding about microbial ecology; yet the methods producing short reads suffer from species-level resolution and uncertainty of identification. Here we optimize PacBio-based metabarcoding protocols covering the Internal Transcribed Spacer (ITS region) and partial Small Subunit (SSU) of the rRNA gene for species-level identification of all eukaryotes, with a specific focus on Fungi (including Glomeromycota) and Stramenopila (particularly Oomycota). Based on tests on composite soil samples and mock communities, we propose best suitable degenerate primers, ITS9munngs + ITS4ngsUni for eukaryotes and selected groups therein and discuss pros and cons of long read-based…

Read More »

Tuesday, April 21, 2020

Identification of Initial Colonizing Bacteria in Dental Plaques from Young Adults Using Full-Length 16S rRNA Gene Sequencing.

Development of dental plaque begins with the adhesion of salivary bacteria to the acquired pellicle covering the tooth surface. In this study, we collected in vivo dental plaque formed on hydroxyapatite disks for 6 h from 74 young adults and identified initial colonizing taxa based on full-length 16S rRNA gene sequences. A long-read, single-molecule sequencer, PacBio Sequel, provided 100,109 high-quality full-length 16S rRNA gene sequence reads from the early plaque microbiota, which were assigned to 90 oral bacterial taxa. The microbiota obtained from every individual mostly comprised the 21 predominant taxa with the maximum relative abundance of over 10% (95.8?±?6.2%,…

Read More »

Tuesday, April 21, 2020

High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution.

Targeted PCR amplification and high-throughput sequencing (amplicon sequencing) of 16S rRNA gene fragments is widely used to profile microbial communities. New long-read sequencing technologies can sequence the entire 16S rRNA gene, but higher error rates have limited their attractiveness when accuracy is important. Here we present a high-throughput amplicon sequencing methodology based on PacBio circular consensus sequencing and the DADA2 sample inference method that measures the full-length 16S rRNA gene with single-nucleotide resolution and a near-zero error rate. In two artificial communities of known composition, our method recovered the full complement of full-length 16S sequence variants from expected community members…

Read More »

Tuesday, April 21, 2020

Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment.

High-throughput studies of microbial communities suggest that Archaea are a widespread component of microbial diversity in various ecosystems. However, proper quantification of archaeal diversity and community ecology remains limited, as sequence coverage of Archaea is usually low owing to the inability of available prokaryotic primers to efficiently amplify archaeal compared to bacterial rRNA genes. To improve identification and quantification of Archaea, we designed and validated the utility of several primer pairs to efficiently amplify archaeal 16S rRNA genes based on up-to-date reference genes. We demonstrate that several of these primer pairs amplify phylogenetically diverse Archaea with high sequencing coverage, outperforming…

Read More »

Tuesday, April 21, 2020

Confident phylogenetic identification of uncultured prokaryotes through long read amplicon sequencing of the 16S-ITS-23S rRNA operon.

Amplicon sequencing of the 16S rRNA gene is the predominant method to quantify microbial compositions and to discover novel lineages. However, traditional short amplicons often do not contain enough information to confidently resolve their phylogeny. Here we present a cost-effective protocol that amplifies a large part of the rRNA operon and sequences the amplicons with PacBio technology. We tested our method on a mock community and developed a read-curation pipeline that reduces the overall read error rate to 0.18%. Applying our method on four environmental samples, we captured near full-length rRNA operon amplicons from a large diversity of prokaryotes. The…

Read More »

Tuesday, April 21, 2020

Using Cre-recombinase-driven Polylox barcoding for in vivo fate mapping in mice.

Fate mapping is a powerful genetic tool for linking stem or progenitor cells with their progeny, and hence for defining cell lineages in vivo. The resolution of fate mapping depends on the numbers of distinct markers that are introduced in the beginning into stem or progenitor cells; ideally, numbers should be sufficiently large to allow the tracing of output from individual cells. Highly diverse genetic barcodes can serve this purpose. We recently developed an endogenous genetic barcoding system, termed Polylox. In Polylox, random DNA recombination can be induced by transient activity of Cre recombinase in a 2.1-kb-long artificial recombination substrate…

Read More »

Tuesday, April 21, 2020

Deciphering bacterial epigenomes using modern sequencing technologies.

Prokaryotic DNA contains three types of methylation: N6-methyladenine, N4-methylcytosine and 5-methylcytosine. The lack of tools to analyse the frequency and distribution of methylated residues in bacterial genomes has prevented a full understanding of their functions. Now, advances in DNA sequencing technology, including single-molecule, real-time sequencing and nanopore-based sequencing, have provided new opportunities for systematic detection of all three forms of methylated DNA at a genome-wide scale and offer unprecedented opportunities for achieving a more complete understanding of bacterial epigenomes. Indeed, as the number of mapped bacterial methylomes approaches 2,000, increasing evidence supports roles for methylation in regulation of gene expression,…

Read More »

Tuesday, April 21, 2020

PacBio sequencing reveals bacterial community diversity in cheeses collected from different regions.

Cheese is a fermented dairy product that is popular for its unique flavor and nutritional value. Recent studies have shown that microorganisms in cheese play an important role in the fermentation process and determine the quality of the cheese. We collected 12 cheese samples from different regions and studied the composition of their bacterial communities using PacBio small-molecule real-time sequencing (Pacific Biosciences, Menlo Park, CA). Our data revealed 144 bacterial genera (including Lactobacillus, Streptococcus, Lactococcus, and Staphylococcus) and 217 bacterial species (including Lactococcus lactis, Streptococcus thermophilus, Staphylococcus equorum, and Streptococcus uberis). We investigated the flavor quality of the cheese samples…

Read More »

Tuesday, April 21, 2020

SMRT long reads and Direct Label and Stain optical maps allow the generation of a high-quality genome assembly for the European barn swallow (Hirundo rustica rustica).

The barn swallow (Hirundo rustica) is a migratory bird that has been the focus of a large number of ecological, behavioral, and genetic studies. To facilitate further population genetics and genomic studies, we present a reference genome assembly for the European subspecies (H. r. rustica).As part of the Genome10K effort on generating high-quality vertebrate genomes (Vertebrate Genomes Project), we have assembled a highly contiguous genome assembly using single molecule real-time (SMRT) DNA sequencing and several Bionano optical map technologies. We compared and integrated optical maps derived from both the Nick, Label, Repair, and Stain technology and from the Direct Label…

Read More »

Tuesday, April 21, 2020

Modulation of metabolome and bacterial community in whole crop corn silage by inoculating homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri.

The present study investigated the species level based microbial community and metabolome in corn silage inoculated with or without homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri using the PacBio SMRT Sequencing and time-of-flight mass spectrometry (GC-TOF/MS). Chopped whole crop corn was treated with (1) deionized water (control), (2) Lactobacillus plantarum, or (3) Lactobacillus buchneri. The chopped whole crop corn was ensiled in vacuum-sealed polyethylene bags containing 300 g of fresh forge for 90 days, with three replicates for each treatment. The results showed that a total of 979 substances were detected, and 316 different metabolites were identified. Some metabolites with…

Read More »

Tuesday, April 21, 2020

Genome of lethal Lepiota venenata and insights into the evolution of toxin-biosynthetic genes.

Genomes of lethal Amanita and Galerina mushrooms have gradually become available in the past ten years; in contrast the other known amanitin-producing genus, Lepiota, is still vacant in this aspect. A fatal mushroom poisoning case in China has led to acquisition of fresh L. venenata fruiting bodies, based on which a draft genome was obtained through PacBio and Illumina sequencing platforms. Toxin-biosynthetic MSDIN family and Porlyl oligopeptidase B (POPB) genes were mined from the genome and used for phylogenetic and statistical studies to gain insights into the evolution of the biosynthetic pathway.The analysis of the genome data illustrated that only…

Read More »

Monday, March 30, 2020

Webinar: Benefits of SMRT Sequencing for HLA typing at Anthony Nolan

Neema Mayor from Anthony Nolan Research Institute offers an introduction to the challenges of characterizing the HLA region, noting that improvements in resolution have allowed scientists to dramatically expand the number of classifications used to match donors to recipients. As sequencing resolution improves, Mayor says, scientists expect to find even more polymorphisms than what has been already catalogued.

Read More »

1 2

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »