June 1, 2021  |  

Metagenomes of native and electrode-enriched microbial communities from the Soudan Iron Mine.

Despite apparent carbon limitation, anoxic deep subsurface brines at the Soudan Underground Iron Mine harbor active microbial communities. To characterize these assemblages, we performed shotgun metagenomics of native and enriched samples. Following enrichment on poised electrodes and long read sequencing, we recovered from the metagenome the closed, circular genome of a novel Desulfuromonas sp. with remarkable genomic features that were not fully resolved by short read assembly alone. This organism was essentially absent in unenriched Soudan communities, indicating that electrodes are highly selective for putative metal reducers. Native community metagenomes suggest that carbon cycling is driven by methyl-C1 metabolism, in particular methylotrophic methanogenesis. Our results highlight the promising potential for long reads in metagenomic surveys of low-diversity environments.


June 1, 2021  |  

Unbiased characterization of metagenome composition and function using HiFi sequencing on the PacBio Sequel II System

Recent work comparing metagenomic sequencing methods indicates that a comprehensive picture of the taxonomic and functional diversity of complex communities will be difficult to achieve with short-read technology alone. While the lower cost of short reads has enabled greater sequencing depth, the greater contiguity of long-read assemblies and lack of GC bias in SMRT Sequencing has enabled better gene finding. However, since long-read assembly requires high coverage for error correction, the benefits of unbiased coverage have in the past been lost for low abundance species. SMRT Sequencing performance improvements and the introduction of the Sequel II System has enabled a new, high throughput data type uniquely suited to metagenome characterization: HiFi reads. HiFi reads combine high accuracy with read lengths up to 15 kb, eliminating the need for assembly for most microbiome applications, including functional profiling, gene discovery, and metabolic pathway reconstruction. Here we present the application of the HiFi data type to enable a new method of analyzing metagenomes that does not require assembly.


June 1, 2021  |  

New advances in SMRT Sequencing facilitate multiplexing for de novo and structural variant studies

The latest advancements in Sequel II SMRT Sequencing have increased average read lengths up to 50% compared to Sequel II chemistry 1.0 which allows multiplexing of 2-3 small organisms (<500 Mb) such as insects and worms for producing reference quality assemblies, calling structural variants for up to 2 samples with ~3 Gb genomes, analysis of 48 microbial genomes, and up to 8 communities for metagenomic profiling in a single SMRT Cell 8M. With the improved processivity of the new Sequel II sequencing polymerase, more SMRTbell molecules reach rolling circle mode resulting in longer overall read lengths, thus allowing efficient detection of barcodes (up to 80%) in the SMRTbell templates. Multiplexing of genomes larger than microbial organisms is now achievable. In collaboration with the Wellcome Sanger Institute, we have developed a workflow for multiplexing two individual Anopheles coluzzii using as low as 150 ng genomic DNA per individual. The resulting assemblies had high contiguity (contig N50s over 3 Mb) and completeness (>98% of conserved genes) for both individuals. For microbial multiplexing, we multiplexed 48 microbes with varying complexities and sizes ranging 1.6-8.0 Mb in single SMRT Cell 8M. Using a new end-to-end analysis (Microbial Assembly Analysis, SMRT Link 8.0), assemblies resulted in complete circularized genomes (>200-fold coverage) and efficient detection of >3-200 kb plasmids. Finally, the long read lengths (>90 kb) allows detection of barcodes in large insert SMRTbell templates (>15 kb) thus facilitating multiplex of two human samples in 1 SMRT Cell 8M for detecting SVs, Indels and CNVs. Here, we present results and describe workflows for multiplexing samples for specific applications for SMRT Sequencing.


June 1, 2021  |  

Unbiased characterization of metagenome composition and function using HiFi sequencing on the PacBio Sequel II System

Recent work comparing metagenomic sequencing methods indicates that a comprehensive picture of the taxonomic and functional diversity of complex communities will be difficult to achieve with one sequencing technology alone. While the lower cost of short reads has enabled greater sequencing depth, the greater contiguity of long-read assemblies and lack of GC bias in SMRT Sequencing has enabled better gene finding. However, since long-read assembly typically requires high coverage for error correction, these benefits have in the past been lost for low-abundance species. The introduction of the Sequel II System has enabled a new, higher throughput, assembly-optional data type that addresses these challenges: HiFi reads. HiFi reads combine QV20 accuracy with long read lengths, eliminating the need for assembly for most metagenome applications, including gene discovery and metabolic pathway reconstruction. In fact, the read lengths and accuracy of HiFi data match or outperform the quality metrics of most metagenome assemblies, enabling cost-effective recovery of intact genes and operons while omitting the resource intensive and data-inefficient assembly step. Here we present the application of HiFi sequencing to both mock and human fecal samples using full-length 16S and shotgun methods. This proof-of-concept work demonstrates the unique strengths of the HiFi method. First, the high correspondence between the expected community composition,16S and shotgun profiling data reflects low context bias. In addition, every HiFi read yields ~5-8 predicted genes, without assembly, using standard tools. If assembly is desired, excellent results can be achieved with Canu and contig binning tools. In summary, HiFi sequencing is a new, cost-effective option for high-resolution functional profiling of metagenomes which complements existing short read workflows.


June 1, 2021  |  

Low-input single molecule HiFi sequencing for metagenomic samples

HiFi sequencing on the PacBio Sequel II System enables complete microbial community profiling of complex metagenomic samples using whole genome shotgun sequences. With HiFi sequencing, highly accurate long reads overcome the challenges posed by the presence of intergenic and extragenic repeat elements in microbial genomes, thus greatly improving phylogenetic profiling and sequence assembly. Recent improvements in library construction protocols enable HiFi sequencing starting from as low as 5 ng of input DNA. Here, we demonstrate comparative analyses of a control sample of known composition and a human fecal sample from varying amounts of input genomic DNA (1 ug, 200 ng, 5 ng), and present the corresponding library preparation workflows for standard, low input, and Ultra-Low methods. We demonstrate that the metagenome assembly, taxonomic assignment, and gene finding analyses are comparable across all methods for both samples, providing access to HiFi sequencing even for DNA-limited sample types.


April 21, 2020  |  

A high-quality genome assembly from a single, field-collected spotted lanternfly (Lycorma delicatula) using the PacBio Sequel II system

Background A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens to damage economically important crop plants in the region. Results The DNA from 1 individual was used to make 1 standard, size-selected library with an average DNA fragment size of ~20 kb. The library was run on 1 Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing ~36× coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Furthermore, it was possible to segregate more than half of the diploid genome into the 2 separate haplotypes. The assembly also recovered 2 microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. Conclusions We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.