September 22, 2019  |  

Effects of antibiotic on microflora in ileum and cecum for broilers by 16S rRNA sequence analysis.

An experiment was conducted to analyze and compare the microbial composition, abundance, dynamic distribution, and functions without and with antibiotic fed to broilers. A 16S rRNA-sequencing approach was used to evaluate the bacterial composition of the gut of male broilers under different groups. A total of 240 1-day old AA male broilers were randomly assigned to two groups, with 120 broilers per group. The treatment group was administered an antibiotic with their feed, while the control group was not administered antibiotic (control group). A total of 10 replicates were assessed per treatment. The control group was fed a basal diet containing corn, soybean meal, and cottonseed meal and met the nutritional requirement. The antibiotic group was fed 100 mg/kg aureomycin (based on the basal diet). The trial lasted 42 days. Operational taxonomic unit partition and classification, alpha diversity, taxonomic composition, beta diversity, and microflora comparative analyses along with key species screening were performed for all of the treatment groups. Our data indicate that aureomycin treatment in broilers is directly correlated with variations of the gut content of specific bacterial taxa, and herein provide insights into the impact of antibiotic on microbial communities in cecum and ileum of broiler chickens.© 2018 Japanese Society of Animal Science.


September 22, 2019  |  

Induced salt tolerance of perennial ryegrass by a novel bacterium strain from the rhizosphere of a desert shrub Haloxylon ammodendron.

Drought and soil salinity reduce agricultural output worldwide. Plant-growth-promoting rhizobacteria (PGPR) can enhance plant growth and augment plant tolerance to biotic and abiotic stresses.Haloxylon ammodendron, a C4 perennial succulent xerohalophyte shrub with excellent drought and salt tolerance, is naturally distributed in the desert area of northwest China. In our previous work, a bacterium strain numbered as M30-35 was isolated from the rhizosphere ofH. ammodendronin Tengger desert, Gansu province, northwest China. In current work, the effects of M30-35 inoculation on salt tolerance of perennial ryegrass were evaluated and its genome was sequenced to identify genes associated with plant growth promotion. Results showed that M30-35 significantly enhanced growth and salt tolerance of perennial ryegrass by increasing shoot fresh and dry weights, chlorophyll content, root volume, root activity, leaf catalase activity, soluble sugar and proline contents that contributed to reduced osmotic potential, tissue K? content and K?/Na? ratio, while decreasing malondialdehyde (MDA) content and relative electric conductivity (REC), especially under higher salinity. The genome of M30-35 contains 4421 protein encoding genes, 12 rRNA, 63 tRNA-encoding genes and four rRNA operons. M30-35 was initially classified as a new species inPseudomonasand named asPseudomonassp. M30-35. Thirty-four genes showing homology to genes associated with PGPR traits and abiotic stress tolerance were identified inPseudomonassp. M30-35 genome, including 12 related to insoluble phosphorus solubilization, four to auxin biosynthesis, four to other process of growth promotion, seven to oxidative stress alleviation, four to salt and drought tolerance and three to cold and heat tolerance. Further study is needed to clarify the correlation between these genes from M30-35 and the salt stress alleviation of inoculated plants under salt stress. Overall, our research indicated that desert shrubs appear rich in PGPRs that can help important crops tolerate abiotic stress.


September 22, 2019  |  

Genome analysis of the yeast M14, an industrial brewing yeast strain widely used in China

The lager brewing yeast M14 is the most widely used yeast strain in the high gravity brewing process in China. To investigate the characteristics of this strain, the genome of the yeast M14 was sequenced and the genome annotation information is presented in this study. The current assembly contained 133 scaffolds and its total size was around 23?Mb with a GC content of 38.98%. The brewing yeast M14 is a hybrid Saccharomyces cerevisiae?×?Saccharomyces uvarum at the genomic level and its genome is comprised of one circular mitochondrial genome originating from S. uvarum. Furthermore, the functions of the 9,796 protein coding genes were annotated and their functions were analyzed using the Swiss-Prot database. Among them, the key genes responsible for typical lager brewing yeast characteristics, such as maltotriose uptake and sulfite production, were annotated and analyzed. Interestingly, nine specific genes present in the brewing yeast M14 were not found in the genome of either S. uvarum CBS 7001 or S. cerevisiae S288C, which are very close to strain M14 in the phylogenetic relationship. These nine genes encoding proteins were melibiase, DNA replication protein, fructose symporter, hypothetical protein, hypothetical protein M773_09155, LIF1, minor spike protein H, ribosomal protein S27, and mitochondrial chaperones, respectively. The genome sequence of the yeast strain M14 provides a new tool to better understand brewing yeast behavior in industrial beer production.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.