X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Complete Whole-Genome Sequences of Two Raoultella terrigena Strains, NCTC 13097 and NCTC 13098, Isolated from Human Cases.

Raoultella terrigena is a bacterial species associated with soil and aquatic environments; however, sporadic cases of opportunistic disease in humans have been reported. Here, we report the first two complete genome sequences from clinical strains isolated from human sources that have been deposited in the National Collection of Type Cultures (NCTC). © Crown copyright 2019.

Read More »

Tuesday, April 21, 2020

Plantibacter flavus, Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens Endophytes Provide Host-Specific Growth Promotion of Arabidopsis thaliana, Basil, Lettuce, and Bok Choy Plants.

A collection of bacterial endophytes isolated from stem tissues of plants growing in soils highly contaminated with petroleum hydrocarbons were screened for plant growth-promoting capabilities. Twenty-seven endophytic isolates significantly improved the growth of Arabidopsis thaliana plants in comparison to that of uninoculated control plants. The five most beneficial isolates, one strain each of Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens and two strains of Plantibacter flavus were further examined for growth promotion in Arabidopsis, lettuce, basil, and bok choy plants. Host-specific plant growth promotion was observed when plants were inoculated with the five bacterial strains. P. flavus strain M251 increased…

Read More »

Tuesday, April 21, 2020

Complete Genome Sequence of Serratia quinivorans Strain 124R, a Facultative Anaerobe Isolated on Organosolv Lignin as a Sole Carbon Source.

The complete genome sequence of the gammaproteobacterial isolate Serratia quinivorans 124R consists of 5 Mb over 2 scaffolds and a G+C content of 52.85%. Genes relating to aromatic metabolism reflect its isolation on organosolv lignin as a sole carbon source under anoxic conditions as well as the potential for lignin biorefinery applications.

Read More »

Tuesday, April 21, 2020

Draft Genome Sequences of 38 Serratia marcescens Isolates Associated with Acroporid Serratiosis.

Serratia marcescens is a Gram-negative bacterium causally linked to acroporid serratiosis, a form of white pox disease implicated in the decline of elkhorn corals. We report draft genomes of 38 S. marcescens isolates collected from host and nonhost sources. The availability of these genomes will aid future analyses of acroporid serratiosis. Copyright © 2019 Elledge et al.

Read More »

Tuesday, April 21, 2020

Klebsiella quasipneumoniae Provides a Window into Carbapenemase Gene Transfer, Plasmid Rearrangements, and Patient Interactions with the Hospital Environment.

Several emerging pathogens have arisen as a result of selection pressures exerted by modern health care. Klebsiella quasipneumoniae was recently defined as a new species, yet its prevalence, niche, and propensity to acquire antimicrobial resistance genes are not fully described. We have been tracking inter- and intraspecies transmission of the Klebsiella pneumoniae carbapenemase (KPC) gene, blaKPC, between bacteria isolated from a single institution. We applied a combination of Illumina and PacBio whole-genome sequencing to identify and compare K. quasipneumoniae from patients and the hospital environment over 10- and 5-year periods, respectively. There were 32 blaKPC-positive K. quasipneumoniae isolates, all of…

Read More »

Tuesday, April 21, 2020

Genomic and transcriptomic characterization of Pseudomonas aeruginosa small colony variants derived from a chronic infection model.

Phenotypic change is a hallmark of bacterial adaptation during chronic infection. In the case of chronic Pseudomonas aeruginosa lung infection in patients with cystic fibrosis, well-characterized phenotypic variants include mucoid and small colony variants (SCVs). It has previously been shown that SCVs can be reproducibly isolated from the murine lung following the establishment of chronic infection with mucoid P. aeruginosa strain NH57388A. Using a combination of single-molecule real-time (PacBio) and Illumina sequencing we identify a large genomic inversion in the SCV through recombination between homologous regions of two rRNA operons and an associated truncation of one of the 16S rRNA…

Read More »

Tuesday, April 21, 2020

Diverse Vectors and Mechanisms Spread New Delhi Metallo-ß-Lactamases among Carbapenem-Resistant Enterobacteriaceae in the Greater Boston Area.

New Delhi metallo-beta-lactamases (NDMs) are an uncommon but emerging cause of carbapenem resistance in the United States. Genomic factors promoting their domestic spread remain poorly characterized. A prospective genomic surveillance program among Boston-area hospitals identified multiple new occurrences of NDM-carrying strains of Escherichia coli and Enterobacter cloacae complex in inpatient and outpatient settings, representing the first occurrences of NDM-mediated resistance since initiating genomic surveillance in 2011. Cases included domestic patients with no international exposures. PacBio sequencing of isolates identified strain characteristics, resistance genes, and the complement of mobile vectors mediating spread. Analyses revealed a common 3,114-bp region containing the blaNDM…

Read More »

Tuesday, April 21, 2020

Information about variations in multiple copies of bacterial 16S rRNA genes may aid in species identification.

Variable region analysis of 16S rRNA gene sequences is the most common tool in bacterial taxonomic studies. Although used for distinguishing bacterial species, its use remains limited due to the presence of variable copy numbers with sequence variation in the genomes. In this study, 16S rRNA gene sequences, obtained from completely assembled whole genome and Sanger electrophoresis sequencing of cloned PCR products from Serratia fonticola GS2, were compared. Sanger sequencing produced a combination of sequences from multiple copies of 16S rRNA genes. To determine whether the variant copies of 16S rRNA genes affected Sanger sequencing, two ratios (5:5 and 8:2)…

Read More »

Tuesday, April 21, 2020

Draft Genome Sequence of Serratia sp. 1D1416.

This work reports the draft genome of Serratia sp. 1D1416. The assembled genome contains a 5,552,016-bp circular chromosome. The strain was discovered in a mixed culture from a gall isolated from Euonymus japonicas.

Read More »

Tuesday, April 21, 2020

Distribution and Genetic Diversity of Genes Involved in Quorum Sensing and Prodigiosin Biosynthesis in the Complete Genome Sequences of Serratia marcescens.

Quorum sensing is a cell density-dependent regulation of gene expression. N-acyl-l-homoserine lactone (AHL) is a major quorum-sensing signaling molecule in gram-negative bacteria and synthesized by the LuxI family protein. The genus Serratia is known as a producer of the red pigment, prodigiosin, whose biosynthesis is dependent on the pig gene cluster. Some Serratia strains regulate prodigiosin production via AHL-mediated quorum sensing, whereas there is red-pigmented Serratia strains without quorum-sensing system. In addition, nonpigmented Serratia marcescens, which does not produce prodigiosin, has also been isolated from natural and clinical environments. In this study, we aim to reveal the distribution and genetic…

Read More »

Tuesday, April 21, 2020

Diversity of phytobeneficial traits revealed by whole-genome analysis of worldwide-isolated phenazine-producing Pseudomonas spp.

Plant-beneficial Pseudomonas spp. competitively colonize the rhizosphere and display plant-growth promotion and/or disease-suppression activities. Some strains within the P. fluorescens species complex produce phenazine derivatives, such as phenazine-1-carboxylic acid. These antimicrobial compounds are broadly inhibitory to numerous soil-dwelling plant pathogens and play a role in the ecological competence of phenazine-producing Pseudomonas spp. We assembled a collection encompassing 63 strains representative of the worldwide diversity of plant-beneficial phenazine-producing Pseudomonas spp. In this study, we report the sequencing of 58 complete genomes using PacBio RS II sequencing technology. Distributed among four subgroups within the P. fluorescens species complex, the diversity of our…

Read More »

Tuesday, April 21, 2020

Investigating the bacterial microbiota of traditional fermented dairy products using propidium monoazide with single-molecule real-time sequencing.

Traditional fermented dairy foods have been the major components of the Mongolian diet for millennia. In this study, we used propidium monoazide (PMA; binds to DNA of nonviable cells so that only viable cells are enumerated) and single-molecule real-time sequencing (SMRT) technology to investigate the total and viable bacterial compositions of 19 traditional fermented dairy foods, including koumiss from Inner Mongolia (KIM), koumiss from Mongolia (KM), and fermented cow milk from Mongolia (CM); sample groups treated with PMA were designated PKIM, PKM, and PCM. Full-length 16S rRNA sequencing identified 195 bacterial species in 121 genera and 13 phyla in PMA-treated…

Read More »

Tuesday, April 21, 2020

Assessment of the microbial diversity of Chinese Tianshan tibicos by single molecule, real-time sequencing technology.

Chinese Tianshan tibico grains were collected from the rural area of Tianshan in Xinjiang province, China. Typical tibico grains are known to consist of polysaccharide matrix that embeds a variety of bacteria and yeasts. These grains are widely used in some rural regions to produce a beneficial sugary beverage that is slightly acidic and contains low level of alcohol. This work aimed to characterize the microbiota composition of Chinese Tianshan tibicos using the single molecule, real-time sequencing technology, which is advantageous in generating long reads. Our results revealed that the microbiota mainly comprised of the bacterial species of Lactobacillus hilgardii,…

Read More »

Tuesday, April 21, 2020

A novel plasmid carrying carbapenem-resistant gene blaKPC-2 in Pseudomonas aeruginosa.

A carbapenem-resistant Pseudomonas aeruginosa strain PA1011 (ST463) was isolated from a patient in a surgical intensive care unit. PCR detection showed that PA1011 carried the blaKPC-2 gene. A plasmid was isolated and sequenced using the Illumina NextSeq 500 and PacBio RSII sequencing platforms. The plasmid was named pPA1011 and carried the carbapenem-resistant gene blaKPC-2. pPA1011 was a 62,793 bp in length with an average G+C content of 58.8%. It was identified as a novel plasmid and encoded a novel genetic environment of blaKPC-2 gene (?IS6-Tn3-ISKpn8-blaKPC-2-ISKpn6-IS26).

Read More »

Tuesday, April 21, 2020

An African Salmonella Typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation.

Bloodstream infections by Salmonella enterica serovar Typhimurium constitute a major health burden in sub-Saharan Africa (SSA). These invasive non-typhoidal (iNTS) infections are dominated by isolates of the antibiotic resistance-associated sequence type (ST) 313. Here, we report emergence of ST313 sublineage II.1 in the Democratic Republic of the Congo. Sublineage II.1 exhibits extensive drug resistance, involving a combination of multidrug resistance, extended spectrum ß-lactamase production and azithromycin resistance. ST313 lineage II.1 isolates harbour an IncHI2 plasmid we name pSTm-ST313-II.1, with one isolate also exhibiting decreased ciprofloxacin susceptibility. Whole genome sequencing reveals that ST313 II.1 isolates have accumulated genetic signatures potentially associated with…

Read More »

1 2

Subscribe for blog updates:

Archives