April 21, 2020  |  

Characterization of an NDM-5 carbapenemase-producing Escherichia coli ST156 isolate from a poultry farm in Zhejiang, China.

The emergence of carbapenem-resistant Enterobacteriaceae strains has posed a severe threat to public health in recent years. The mobile elements carrying the New Delhi metallo-ß-lactqtamase (NDM) gene have been regarded as the major mechanism leading to the rapid increase of carbapenem-resistant Enterobacteriaceae strains isolated from clinics and animals.We describe an NDM-5-producing Escherichia coli strain, ECCRA-119 (sequence type 156 [ST156]), isolated from a poultry farm in Zhejiang, China. ECCRA-119 is a multidrug-resistant (MDR) isolate that exhibited resistance to 27 antimicrobial compounds, including imipenem and meropenem, as detected by antimicrobial susceptibility testing (AST). The complete genome sequence of the ECCRA-119 isolate was also obtained using the PacBio RS II platform. Eleven acquired resistance genes were identified in the chromosome; four were detected in plasmid pTB201, while six were detected in plasmid pTB202. Importantly, the carbapenem-resistant gene blaNDM-5 was detected in the IncX3 plasmid pTB203. In addition, seven virulence genes and one metal-resistance gene were also detected. The results of conjugation experiments and the transfer regions identification indicated that the blaNDM-5-harboring plasmid pTB203 could be transferred between E. coli strains.The results reflected the severe bacterial resistance in a poultry farm in Zhejiang province and increased our understanding of the presence and transmission of the blaNDM-5 gene.


July 7, 2019  |  

Fosfomycin resistance in Escherichia coli, Pennsylvania, USA.

Fosfomycin resistance in Escherichia coli is rare in the United States. An extended-spectrum ß-lactamase-producing E. coli clinical strain identified in Pennsylvania, USA, showed high-level fosfomycin resistance caused by the fosA3 gene. The IncFII plasmid carrying this gene had a structure similar to those found in China, where fosfomycin resistance is commonly described.


July 7, 2019  |  

Complete sequence of conjugative IncA/C plasmid encoding CMY-2 ß-lactamase and RmtE 16S rRNA methyltransferase.

RmtE is a rare 16S-RMTase which was first reported in an aminoglycoside-resistant Escherichia coli strain of calf origin (1). Subsequently, we reported the first human case of infection caused by RmtE-producing E. coli (2). The rmtE gene is carried on a self-conjugative plasmid (pYDC637) in the latter strain. The present work aimed to elucidate the genetic context of rmtE. The sequencing approach has been described previously (3). In brief, the plasmid was extracted from an E. coli TOP10 transformant carrying pYDC637 and sequenced on a PacBio RS II sequencing instrument (Pacific Biosciences, Menlo Park, CA). Assembly was also conducted using the HGAP pipeline (Pacific Biosciences) as previously described (3).


July 7, 2019  |  

Complete sequence of a conjugative IncN plasmid harboring blakpc-2, blashv-12, and qnrS1 from an Escherichia coli sequence type 648 strain

We sequenced a novel conjugative blaKPC-2-harboring IncN plasmid, pYD626E, from an Escherichia coli sequence type 648 strain previously identified in Pittsburgh, Pennsylvania. pYD626E was 72,800 bp long and carried four ß-lactamase genes, blaKPC-2, blaSHV-12, blaLAP-1, and blaTEM-1. In addition, it harbored qnrS1 (fluoroquinolone resistance) and dfrA14 (trimethoprim resistance). The plasmid profile and clinical history supported the in vivo transfer of this plasmid between Klebsiella pneumoniae and Escherichia coli. Copyright © 2014, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Whole-genome sequencing identification of a multidrug-resistant Salmonella enterica serovar Typhimurium strain carrying blaNDM-5 from Guangdong, China.

A carbapenem-resistant Salmonella enterica serovar Typhimurium (sequence type 34 [ST34]) strain was isolated from a fecal specimen from a child with acute diarrhea. Whole-genome sequencing revealed that the 84.5-kb IncFII plasmid pST41-NDM carrying the NDM-5 carbapenemase gene possesses a structure identical to that of the IncFII-type plasmid backbone. However, the blaNDM-5 flanking sequence found in this plasmid is identical to the blaNDM-5-positive IncX3 plasmids carried by 10 strains of Enterobacteriaceae identified in the same hospital. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Comparative analysis of an IncR plasmid carrying armA, blaDHA-1 and qnrB4 from Klebsiella pneumoniae ST37 isolates.

The objective of this study was to conduct a comparative analysis with reported IncR plasmids of a Klebsiella pneumoniae IncR plasmid carrying an MDR region.MDR K. pneumoniae isolates were serially identified from two inpatients at a hospital in the USA in 2014. MDR plasmid pYDC676 was fully sequenced, annotated and compared with related plasmids. Antimicrobial susceptibility testing, PFGE and MLST were also conducted.The K. pneumoniae isolates were identical by PFGE, belonged to ST37 and harboured an identical ~50 kb IncR plasmid (pYDC676). pYDC676 possessed the backbone and multi-IS loci closely related to IncR plasmids reported from aquatic bacteria, as well as animal and human K. pneumoniae strains, and carried an MDR region consisting of armA, blaDHA-1 and qnrB4, a combination that has been reported in IncR plasmids from K. pneumoniae ST11 strains in Europe and Asia. A plasmid with the identical IncR backbone and a similar MDR region containing blaDHA-1 and qnrB4 has also been reported in ST37 strains from Europe, suggesting potential dissemination of this lineage of IncR plasmids in K. pneumoniae ST37.K. pneumoniae ST37 strains with an MDR IncR plasmid carrying armA, blaDHA-1 and qnrB4 were identified in a hospital in the USA, where these resistance genes remain rare. The IncR backbone may play a role in the global dissemination of these resistance genes.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

New Delhi metallo-ß-lactamase-1-producing Klebsiella pneumoniae, Florida, USA(1).

New Delhi metallo-ß-lactamase (NDM)–producing Enterobacteriaceae have swiftly spread worldwide since an initial report in 2008 from a patient who had been transferred from India back home to Sweden (1). Epidemiologically, the global diffusion of NDM-1 producers has been associated with the Indian subcontinent and the Balkan region, which are considered the primary and secondary reservoirs of these pathogens, respectively (1). However, recent reports suggest that countries in the Middle East may constitute another potential reservoir for NDM-1 producers (1). More than 100 NDM-producing isolates have been reported in the United States, most of which were associated with recent travel from the Indian subcontinent (2,3). We report an NDM-1–producing Klebsiella pneumoniae strain that was recovered from a patient who had been transferred from Iran to a hospital in Florida, United States.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.