X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, January 7, 2021

Application Brief: Long-read RNA sequencing – Best Practices

With Single Molecule, Real-Time (SMRT) Sequencing and the Sequel Systems, you can easily and affordably sequence complete transcript isoforms in genes of interest or across the entire transcriptome. The Iso-Seq method allows users to generate full-length cDNA sequences up to 10 kb in length — with no assembly required — to confidently characterize full-length transcript isoforms.

Read More »

Wednesday, January 6, 2021

i5K Webinar: High-quality de novo insect genome assemblies using PacBio sequencing

PacBio Sequencing is characterized by very long sequence reads (averaging > 10,000 bases), lack of GC-bias, and high consensus accuracy. These features have allowed the method to provide a new gold standard in de novo genome assemblies, producing highly contiguous (contig N50 > 1 Mb) and accurate (> QV 50) genome assemblies. We will briefly describe the technology and then highlight the full workflow, from sample preparation through sequencing to data analysis, on examples of insect genome assemblies, and illustrate the difference these high-quality genomes represent with regard to biological insights, compared to fragmented draft assemblies generated by short-read sequencing.

Read More »

Wednesday, January 6, 2021

Webinar: An introduction to PacBio’s long-read sequencing & how it has been used to make important scientific discoveries

In this Webinar, we will give an introduction to Pacific Biosciences’ single molecule, real-time (SMRT) sequencing. After showing how the system works, we will discuss the main features of the technology with an emphasis on the difference between systematic error and random error and how SMRT sequencing produces better consensus accuracy than other systems. Following this, we will discuss several ground-breaking discoveries in medical science that were made possible by the longs reads and high accuracy of SMRT Sequencing.

Read More »

Wednesday, January 6, 2021

Webinar: PacBio targeted sequencing of long amplicons using PCR or hybrid capture

Targeted sequencing experiments commonly rely on either PCR or hybrid capture to enrich for targets of interest. When using short read sequencing platforms, these amplicons or fragments are frequently targeted to a few hundred base pairs to accommodate the read lengths of the platform. Given PacBio’s long readlength, it is straightforward to sequence amplicons or captured fragments that are multiple kilobases in length. These long sequences are useful for easily visualizing variants that include SNPs, CNVs and other structural variants, often without assembly. We will review methods for the sequencing of long amplicons and provide examples using amplicons that range…

Read More »

Wednesday, January 6, 2021

Webinar: Chasing alternative splicing in cancer: Simplified full-length isoform sequencing

Tremendous flexibility is maintained in the human proteome via alternative splicing, and cancer genomes often subvert this flexibility to promote survival. Identification and annotation of cancer-specific mRNA isoforms is critical to understanding how mutations in the genome affect the biology of cancer cells. While microarrays and other NGS-based methods have become useful for studying transcriptomes, these technologies yield short, fragmented transcripts that remain a challenge for accurate, complete reconstruction of splice variants. The Iso-Seq method developed at PacBio offers the only solution for direct sequencing of full-length, single-molecule cDNA sequences needed to discover biomarkers for early detection and cancer stratification,…

Read More »

Wednesday, January 6, 2021

Webinar: SMRT Sequencing applications in plant and animal sciences: an overview

In this webinar, Emily Hatas of PacBio shares information about the applications and benefits of SMRT Sequencing in plant and animal biology, agriculture, and industrial research fields. This session contains an overview of several applications: whole-genome sequencing for de novo assembly; transcript isoform sequencing (Iso-Seq) method for genome annotation; targeted sequencing solutions; and metagenomics and microbial interactions. High-level workflows and best practices are discussed for key applications.

Read More »

Wednesday, January 6, 2021

Webinar: New PacBio solutions for high-resolution microbiology & immunology analysis

PacBio sequencing has been recognized as the gold-standard in microbial sequencing due to simultaneously providing long sequence reads (genome contiguity), high consensus accuracy (genome accuracy), minimal sequence bias (genome completeness), and methylation detection (bacterial epigenome). In his talk Jonas Korlach, highlights new advances and updates on applying PacBio sequencing in microbiology, including multiplexed microbial sequencing on the Sequel System and full-length bacterial RNA sequencing. In the second part of his talk, he covers how the generation of high-accuracy, single-molecule consensus reads, through a process called circular consensus sequencing – a capability unique to PacBio sequencing technology – can be leveraged…

Read More »

Wednesday, January 6, 2021

Webinar: Sequencing 101 – How long-read sequencing improves access to genetic information

In this webinar, Kristin Mars, Sequencing Specialist, PacBio, presents an introduction to PacBio’s technology and its applications followed by a panel discussion among sequencing experts. The panel discussion addresses such things as what long reads are and how are they useful, what differentiates PacBio long-read sequencing from other technologies, and the applications PacBio offers and how they can benefit scientific research.

Read More »

Wednesday, January 6, 2021

Webinar: Long HiFi reads for high-quality genome assemblies

In this LabRoots webinar, Jonas Korlach the CSO of PacBio provides an introduction to PacBio HiFi sequence reads, which are both long (up to 25 kb currently) and accurate (>99%) at the individual single-molecule sequence read level andhave allowed for advances in de novo genome assemblies. Korlach reviews the characteristics of HiFi read data obtained with the Sequel II System, followed by examples of high-quality genome assemblies for human, plant and animal genomes including the different aspects of evaluating genome assemblies (contiguity, accuracy, completeness and allelic phasing) and illustrates their high quality by examples of resolving centromeres, telomeres, segmental duplications…

Read More »

Wednesday, January 6, 2021

Webinar: Bioinformatics lunch & learn – HiFi assembly

The release of the PacBio Sequel II System in 2019 brought dramatic throughput improvements and protocols for producing a new data type, highly accurate long reads or HiFi reads. PacBio is the only sequencing technology to offer highly accurate long reads (HiFi reads) that provide Sanger-quality accuracy (>99%) with the read lengths needed for assembly of complex genomes. The long length and high accuracy of HiFi reads makes them the ideal starting point for many applications, and one area of major interest is genome assembly. HiFi assembly is faster, cheaper, more accurate, and easier to phase than standard long-read assembly.…

Read More »

Wednesday, January 6, 2021

PacBio Workshop: Understanding the biology of genomes with HiFi sequencing

The utility of new highly accurate long reads, or HiFi reads, was first demonstrated for calling all variant types in human genomes. It has since been shown that HiFi reads can be used to generate contiguous, complete, and accurate human genomes, even in repeat structures such as centromeres and telomeres. In this virtual workshop scientists from PacBio as well as Tina Graves-Lindsay from the McDonnell Genome Institute at Washington University share the many improvements we’ve made to HiFi sequencing in the past year, tools that take advantage of HiFi data for variant detection and assembly, and examples in numerous genomics…

Read More »

Wednesday, January 6, 2021

Webinar: Beyond a single reference genome – The advantages of sequencing multiple individuals

Hear how scientists have used PacBio sequencing to develop pangenome collections and to study population genetics of plant and animal species to power their research. Learn about the advantages of sequencing multiple individuals to gain comprehensive views of genetic variation, and understand the speed, cost, and accuracy benefits of using highly accurate long reads (HiFi reads) to sequence your species of interest.

Read More »

Wednesday, January 6, 2021

ASHG PacBio Workshop: Latest product and application updates

In this ASHG 2020 PacBio Workshop Jonas Korlach, CSO, shares how the new PacBio Sequel IIe System makes highly accurate long-read sequencing easy and affordable so?all scientists can gain comprehensive views of human genomes and transcriptomes. He goes on to provide updates on the applications including human WGS for variant detection, de novo genome assembly, single-cell full-length RNA sequencing, and targeted sequencing using PCR and No-Amp methods.

Read More »

Wednesday, January 6, 2021

Webinar: Increasing solve rates for rare and Mendelian diseases with long-read sequencing

Dr. Wenger gives attendees an update on PacBio’s long-read sequencing and variant detection capabilities on the Sequel II System and shares recommendations on how to design your own study using HiFi reads. Then, Dr. Sund from Cincinnati Children’s Hospital Medical Center describes how she has used long-read sequencing to solve rare neurological diseases involving complex structural rearrangements that were previously unsolved with standard methods.

Read More »

1 2 3 10

Subscribe for blog updates:

Archives