Menu
April 21, 2020  |  

Function and Distribution of a Lantipeptide in Strawberry Fusarium Wilt Disease-Suppressive Soils.

Streptomyces griseus S4-7 is representative of strains responsible for the specific soil suppressiveness of Fusarium wilt of strawberry caused by Fusarium oxysporum f. sp. fragariae. Members of the genus Streptomyces secrete diverse secondary metabolites including lantipeptides, heat-stable lanthionine-containing compounds that can exhibit antibiotic activity. In this study, a class II lantipeptide provisionally named grisin, of previously unknown biological function, was shown to inhibit F. oxysporum. The inhibitory activity of grisin distinguishes it from other class II lantipeptides from Streptomyces spp. Results of quantitative reverse transcription-polymerase chain reaction with lanM-specific primers showed that the density of grisin-producing Streptomyces spp. in the rhizosphere of strawberry was positively correlated with the number of years of monoculture and a minimum of seven years was required for development of specific soil suppressiveness to Fusarium wilt disease. We suggest that lanM can be used as a diagnostic marker of whether a soil is conducive or suppressive to the disease.


April 21, 2020  |  

Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities.

Natural product discovery from microorganisms provided important sources for antibiotics, anti-cancer agents, immune-modulators, anthelminthic agents, and insecticides during a span of 50 years starting in the 1940s, then became less productive because of rediscovery issues, low throughput, and lack of relevant new technologies to unveil less abundant or not easily detected drug-like natural products. In the early 2000s, it was observed from genome sequencing that Streptomyces species encode about ten times as many secondary metabolites as predicted from known secondary metabolomes. This gave rise to a new discovery approach-microbial genome mining. As the cost of genome sequencing dropped, the numbers of sequenced bacteria, fungi and archaea expanded dramatically, and bioinformatic methods were developed to rapidly scan whole genomes for the numbers, types, and novelty of secondary metabolite biosynthetic gene clusters. This methodology enabled the identification of microbial taxa gifted for the biosynthesis of drug-like secondary metabolites. As genome sequencing technology progressed, the realities relevant to drug discovery have emerged, the conjectures and misconceptions have been clarified, and opportunities to reinvigorate microbial drug discovery have crystallized. This perspective addresses these critical issues for drug discovery.


April 21, 2020  |  

Complete genome sequence unveiled cellulose degradation enzymes and secondary metabolic potentials in Streptomyces sp. CC0208.

Marine Streptomyces sp. CC0208 isolated from the Bohai Bay showed high efficiency of cellulose degradation under optimized fermentation parameters. Also, as one of the bioinformatics-based approaches for the discovery of novel natural product and enzyme effectively, genome mining has been developed and applied widely. Herein, we reported the complete genome sequence of Streptomyces sp. CC0208.Whole-genome sequencing analysis revealed a genome size of 9,325,981?bp with a linear chromosome, GC content of 70.59% and 8487 protein-coding genes. Abundant genes have predicted functions in antibiotic metabolism and enzymes. A 20 enzymes closely associated with cellulose degradation were discovered. A total of 25 biosynthetic gene clusters (BGCs) of secondary metabolites were identified, including diverse classes of natural products. The availability of genome sequence of Streptomyces sp. CC0208 not only will assist in cracking the mechanism of cellulose degradation but also will provide the insights into the significant secondary metabolic potentials for the production of diverse compound classes based on rational strategies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


April 21, 2020  |  

Carbohydrate catabolic capability of a Flavobacteriia bacterium isolated from hadal water.

Flavobacteriia are abundant in many marine environments including hadal waters, as demonstrated recently. However, it is unclear how this flavobacterial population adapts to hadal conditions. In this study, extensive comparative genomic analyses were performed for the flavobacterial strain Euzebyella marina RN62 isolated from the Mariana Trench hadal water in low abundance. The complete genome of RN62 possessed a considerable number of carbohydrate-active enzymes with a different composition. There was a predominance of GH family 13 proteins compared to closely related relatives, suggesting that RN62 has preserved a certain capacity for carbohydrate utilization and that the hadal ocean may hold an organic matter reservoir distinct from the surface ocean. Additionally, RN62 possessed potential intracellular cycling of the glycogen/starch pathway, which may serve as a strategy for carbon storage and consumption in response to nutrient pulse and starvation. Moreover, the discovery of higher glycoside hydrolase dissimilarities among Flavobacteriia, compared to peptidases and transporters, suggested variation in polysaccharide utilization related traits as an important ecophysiological factor in response to environmental alterations, such as decreased labile organic carbon in hadal waters. The presence of abundant toxin exporting, transcription and signal transduction related genes in RN62 may further help to survive in hadal conditions, including high pressure/low temperature.Copyright © 2019 Elsevier GmbH. All rights reserved.


April 21, 2020  |  

High Quality Draft Genome of Arogyapacha (Trichopus zeylanicus), an Important Medicinal Plant Endemic to Western Ghats of India.

Arogyapacha, the local name of Trichopus zeylanicus, is a rare, indigenous medicinal plant of India. This plant is famous for its traditional use as an instant energy stimulant. So far, no genomic resource is available for this important plant and hence its metabolic pathways are poorly understood. Here, we report on a high-quality draft assembly of approximately 713.4 Mb genome of T. zeylanicus, first draft genome from the genus Trichopus The assembly was generated in a hybrid approach using Illumina short-reads and Pacbio longer-reads. The total assembly comprised of 22601 scaffolds with an N50 value of 433.3 Kb. We predicted 34452 protein coding genes in T. zeylanicus genome and found that a significant portion of these predicted genes were associated with various secondary metabolite biosynthetic pathways. Comparative genome analysis revealed extensive gene collinearity between T. zeylanicus and its closely related plant species. The present genome and annotation data provide an essential resource to speed-up the research on secondary metabolism, breeding and molecular evolution of T. zeylanicus. Copyright © 2019 Chellappan et al.


April 21, 2020  |  

Complete Genome Sequence of Saccharospirillum mangrovi HK-33T Sheds Light on the Ecological Role of a Bacterium in Mangrove Sediment Environment.

We present the genome sequence of Saccharospirillum mangrovi HK-33T, isolated from a mangrove sediment sample in Haikou, China. The complete genome of S. mangrovi HK-33T consisted of a single-circular chromosome with the size of 3,686,911 bp as well as an average G?+?C content of 57.37%, and contained 3,383 protein-coding genes, 4 operons of 16S-23S-5S rRNA genes, and 52 tRNA genes. Genomic annotation indicated that the genome of S. mangrovi HK-33T had many genes related to oligosaccharide and polysaccharide degradation and utilization of polyhydroxyalkanoate. For nitrogen cycle, genes encoding nitrate and nitrite reductase, glutamate dehydrogenase, glutamate synthase, and glutamine synthetase could be found. For phosphorus cycle, genes related to polyphosphate kinases (ppk1 and ppk2), the high-affinity phosphate-specific transport (Pst) system, and the low-affinity inorganic phosphate transporter (pitA) were predicted. For sulfur cycle, cysteine synthase and type III acyl coenzyme A transferase (dddD) coding genes were searched out. This study provides evidence about carbon, nitrogen, phosphorus, and sulfur metabolic patterns of S. mangrovi HK-33T and broadens our understandings about ecological roles of this bacterium in the mangrove sediment environment.


April 21, 2020  |  

Structural and functional characterization of an intradiol ring-cleavage dioxygenase from the polyphagous spider mite herbivore Tetranychus urticae Koch.

Genome analyses of the polyphagous spider mite herbivore Tetranychus urticae (two-spotted spider mite) revealed the presence of a set of 17 genes that code for secreted proteins belonging to the “intradiol dioxygenase-like” subgroup. Phylogenetic analyses indicate that this novel enzyme family has been acquired by horizontal gene transfer. In order to better understand the role of these proteins in T. urticae, we have structurally and functionally characterized one paralog (tetur07g02040). It was demonstrated that this protein is indeed an intradiol ring-cleavage dioxygenase, as the enzyme is able to cleave catechol between two hydroxyl-groups using atmospheric dioxygen. The enzyme was characterized functionally and structurally. The active site of the T. urticae enzyme contains an Fe3+ cofactor that is coordinated by two histidine and two tyrosine residues, an arrangement that is similar to those observed in bacterial homologs. However, the active site is significantly more solvent exposed than in bacterial proteins. Moreover, the mite enzyme is monomeric, while almost all structurally characterized bacterial homologs form oligomeric assemblies. Tetur07g02040 is not only the first spider mite dioxygenase that has been characterized at the molecular level, but is also the first structurally characterized intradiol ring-cleavage dioxygenase originating from a eukaryote.Copyright © 2018 Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Evolution of Antibiotic Synthesis Gene Clusters in the Streptomyces globisporus TFH56, Isolated from Tomato Flower.

Streptomyces species are known to produce various bioactive metabolites that can prevent plant diseases. Previously, the Streptomyces strain TFH56 was found to inhibit the gray mold pathogen, Botrytis cinerea, in tomato flower. In this study, the genome sequence of strain TFH56 was acquired using the Pacific Biosciences RS II platform. Three linear sequences (7.67 Mbp in total) were obtained. Based on average nucleotide identity, strain TFH56 was classified as Streptomyces globisporus, which is consistent with the presence of a linear chromosome and linear plasmids. Moreover, as with other examples of S. globisporus, the genome of strain TFH56 included a caryolan-1-ol synthase gene, a conprimycin synthetic gene cluster, and a lidamycin synthetic gene cluster.Copyright © 2019 Cho, Kwak.


April 21, 2020  |  

Depiction of secondary metabolites and antifungal activity of Bacillus velezensis DTU001.

For a safe and sustainable environment, effective microbes as biocontrol agents are in high demand. We have isolated a new Bacillus velezensis strain DTU001, investigated its antifungal spectrum, sequenced its genome, and uncovered the production of lipopeptides in HPLC-HRMS analysis. To test the antifungal efficacy, extracts of B. velezensis DTU001 was tested against a range of twenty human or plant pathogenic fungi. We demonstrate that inhibitory potential of B. velezensis DTU001 against selected fungi is superior in comparison to single lipopeptide, either iturin or fengycin. The isolate showed analogous biofilm formation to other closely related Bacilli. To further support the biocontrol properties of the isolate, coculture with Candida albicans demonstrated that B. velezensis DTU001 exhibited excellent antiproliferation effect against C. albicans. In summary, the described isolate is a potential antifungal agent with a broad antifungal spectrum that might assist our aims to avoid hazardous pathogenic fungi and provide alternative to toxicity caused by chemicals.


April 21, 2020  |  

Blast Fungal Genomes Show Frequent Chromosomal Changes, Gene Gains and Losses, and Effector Gene Turnover.

Pyricularia is a fungal genus comprising several pathogenic species causing the blast disease in monocots. Pyricularia oryzae, the best-known species, infects rice, wheat, finger millet, and other crops. As past comparative and population genomics studies mainly focused on isolates of P. oryzae, the genomes of the other Pyricularia species have not been well explored. In this study, we obtained a chromosomal-level genome assembly of the finger millet isolate P. oryzae MZ5-1-6 and also highly contiguous assemblies of Pyricularia sp. LS, P. grisea, and P. pennisetigena. The differences in the genomic content of repetitive DNA sequences could largely explain the variation in genome size among these new genomes. Moreover, we found extensive gene gains and losses and structural changes among Pyricularia genomes, including a large interchromosomal translocation. We searched for homologs of known blast effectors across fungal taxa and found that most avirulence effectors are specific to Pyricularia, whereas many other effectors share homologs with distant fungal taxa. In particular, we discovered a novel effector family with metalloprotease activity, distinct from the well-known AVR-Pita family. We predicted 751 gene families containing putative effectors in 7 Pyricularia genomes and found that 60 of them showed differential expression in the P. oryzae MZ5-1-6 transcriptomes obtained under experimental conditions mimicking the pathogen infection process. In summary, this study increased our understanding of the structural, functional, and evolutionary genomics of the blast pathogen and identified new potential effector genes, providing useful data for developing crops with durable resistance. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


April 21, 2020  |  

A global survey of full-length transcriptome of Ginkgo biloba reveals transcript variants involved in flavonoid biosynthesis

Ginkgo biloba, which contains flavonoids as bioactive components, is widely used in traditional Chinese medicine. Increasing the flavonoid production of medicinal plants through genetic engineering generally focuses on the key genes involved in flavonoid biosynthesis. However, the molecular mechanisms underlying such biosynthesis are not yet well understood. To understand these mechanisms, a combination of second-generation sequencing (SGS) and single-molecule real-time (SMRT) sequencing was applied to G. biloba. Eight tissues were sampled for SMRT sequencing to generate a high-quality, full-length transcriptome database. From 23.36 Gb clean reads, 12,954 alternative polyadenylation events, 12,290 alternative splicing events, 929 fusion transcripts, 2,286 novel transcripts, and 1,270 lncRNAs were predicted by removing redundant reads. Further studies reveal that 7 AS, 5 lncRNA, and 6 fusion gene events were identified in flavonoid biosynthesis. A total of 12 gene modules were revealed to be involved in flavonoid metabolism structural genes and transcription factors by constructing co-expression networks. Weighted gene coexpression network analysis (WGCNA) analysis reveals that some hub genes operate during the biosynthesis by identifying transcription factors (TFs) and structure genes. Seven key hub genes were also identified by analyzing the correlation between gene expression level and flavonoids content. The results highlight the importance of SMRT sequencing of the full-length transcriptome in improving genome annotation and elucidating the gene regulation of flavonoid biosynthesis in G. biloba by providing a comprehensive set of reference transcripts.


April 21, 2020  |  

The complete genome sequence of Ethanoligenens harbinense reveals the metabolic pathway of acetate-ethanol fermentation: A novel understanding of the principles of anaerobic biotechnology.

Ethanol-type fermentation is one of three main fermentation types in the acidogenesis of anaerobic treatment systems. Non-spore-forming Ethanoligenens is as a typical genus capable of ethanol-type fermentation in mixed culture (i.e. acetate-ethanol fermentation). This genus can produce ethanol, acetate, CO2, and H2 using carbohydrates, and has application potential in anaerobic bioprocesses. Here, the complete genome sequences and methylome of Ethanoligenens harbinense strains with different autoaggregative and coaggregative abilities were obtained using the PacBio single-molecule real-time sequencing platform. The genome size of E. harbinense strains was about 2.97-3.10?Mb with 55.5% G+C content. 3020-3153 genes were annotated, most of which were methylated at specific sites or motifs. The methylation types included 6mA, 4mC, and unknown types. Comparative genomic analysis demonstrated low levels of genetic similarity between E. harbinense and other well-known hydrogen-producing bacteria (i.e., Clostridium and Thermoanaerobacter) in phylogenesis. Hydrogen production of E. harbinense was catalyzed by genes that encode [FeFe]-hydrogenases and that were synthesized by three maturases of [FeFe]-H2ase. The metabolic mechanism of H2-ethanol co-production fermentation, catalyzed by pyruvate ferredoxin oxidoreductase was proposed. This study provides genetic and evolutionary information of a model genus for the further investigation of the metabolic pathway and regulatory network of ethanol-type fermentation and anaerobic bioprocesses for waste or wastewater treatment.Copyright © 2019. Published by Elsevier Ltd.


April 21, 2020  |  

Uncovering the biosynthetic potential of rare metagenomic DNA using co-occurrence network analysis of targeted sequences.

Sequencing of DNA extracted from environmental samples can provide key insights into the biosynthetic potential of uncultured bacteria. However, the high complexity of soil metagenomes, which can contain thousands of bacterial species per gram of soil, imposes significant challenges to explore secondary metabolites potentially produced by rare members of the soil microbiome. Here, we develop a targeted sequencing workflow termed CONKAT-seq (co-occurrence network analysis of targeted sequences) that detects physically clustered biosynthetic domains, a hallmark of bacterial secondary metabolism. Following targeted amplification of conserved biosynthetic domains in a highly partitioned metagenomic library, CONKAT-seq evaluates amplicon co-occurrence patterns across library subpools to identify chromosomally clustered domains. We show that a single soil sample can contain more than a thousand uncharacterized biosynthetic gene clusters, most of which originate from low frequency genomes which are practically inaccessible through untargeted sequencing. CONKAT-seq allows scalable exploration of largely untapped biosynthetic diversity across multiple soils, and can guide the discovery of novel secondary metabolites from rare members of the soil microbiome.


April 21, 2020  |  

Comprehensive identification of the full-length transcripts and alternative splicing related to the secondary metabolism pathways in the tea plant (Camellia sinensis).

Flavonoids, theanine and caffeine are the main secondary metabolites of the tea plant (Camellia sinensis), which account for the tea’s unique flavor quality and health benefits. The biosynthesis pathways of these metabolites have been extensively studied at the transcriptional level, but the regulatory mechanisms are still unclear. In this study, to explore the transcriptome diversity and complexity of tea plant, PacBio Iso-Seq and RNA-seq analysis were combined to obtain full-length transcripts and to profile the changes in gene expression during the leaf development. A total of 1,388,066 reads of insert (ROI) were generated with an average length of 1,762?bp, and more than 54% (755,716) of the ROIs were full-length non-chimeric (FLNC) reads. The Benchmarking Universal Single-Copy Orthologue (BUSCO) completeness was 92.7%. A total of 93,883 non-redundant transcripts were obtained, and 87,395 (93.1%) were new alternatively spliced isoforms. Meanwhile, 7,650 differential expression transcripts (DETs) were identified. A total of 28,980 alternative splicing (AS) events were predicted, including 1,297 differential AS (DAS) events. The transcript isoforms of the key genes involved in the flavonoid, theanine and caffeine biosynthesis pathways were characterized. Additionally, 5,777 fusion transcripts and 9,052 long non-coding RNAs (lncRNAs) were also predicted. Our results revealed that AS potentially plays a crucial role in the regulation of the secondary metabolism of the tea plant. These findings enhanced our understanding of the complexity of the secondary metabolic regulation of tea plants and provided a basis for the subsequent exploration of the regulatory mechanisms of flavonoid, theanine and caffeine biosynthesis in tea plants.


April 21, 2020  |  

Genome Features and Secondary Metabolites Biosynthetic Potential of the Class Ktedonobacteria.

The prevalence of antibiotic resistance and the decrease in novel antibiotic discovery in recent years necessitates the identification of potentially novel microbial resources to produce natural products. Ktedonobacteria, a class of deeply branched bacterial lineage in the ancient phylum Chloroflexi, are ubiquitous in terrestrial environments and characterized by their large genome size and complex life cycle. These characteristics indicate Ktedonobacteria as a potential active producer of bioactive compounds. In this study, we observed the existence of a putative “megaplasmid,” multiple copies of ribosomal RNA operons, and high ratio of hypothetical proteins with unknown functions in the class Ktedonobacteria. Furthermore, a total of 104 antiSMASH-predicted putative biosynthetic gene clusters (BGCs) for secondary metabolites with high novelty and diversity were identified in nine Ktedonobacteria genomes. Our investigation of domain composition and organization of the non-ribosomal peptide synthetase and polyketide synthase BGCs further supports the concept that class Ktedonobacteria may produce compounds structurally different from known natural products. Furthermore, screening of bioactive compounds from representative Ktedonobacteria strains resulted in the identification of broad antimicrobial activities against both Gram-positive and Gram-negative tested bacterial strains. Based on these findings, we propose the ancient, ubiquitous, and spore-forming Ktedonobacteria as a versatile and promising microbial resource for natural product discovery.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.