Menu
April 21, 2020  |  

Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence.

Recombination between loci underlying mate choice and ecological traits is a major evolutionary force acting against speciation with gene flow. The evolution of linkage disequilibrium between such loci is therefore a fundamental step in the origin of species. Here, we show that this process can take place in the absence of physical linkage in hamlets-a group of closely related reef fishes from the wider Caribbean that differ essentially in colour pattern and are reproductively isolated through strong visually-based assortative mating. Using full-genome analysis, we identify four narrow genomic intervals that are consistently differentiated among sympatric species in a backdrop of extremely low genomic divergence. These four intervals include genes involved in pigmentation (sox10), axial patterning (hoxc13a), photoreceptor development (casz1) and visual sensitivity (SWS and LWS opsins) that develop islands of long-distance and inter-chromosomal linkage disequilibrium as species diverge. The relatively simple genomic architecture of species differences facilitates the evolution of linkage disequilibrium in the presence of gene flow.


April 21, 2020  |  

Complete genome sequences of a H2O2-resistant psychrophilic bacterium Colwellia sp. Arc7-D isolated from Arctic Ocean sediment

Colwellia sp. Arc7-D, a psychrophilic H2O2-resisitant bacterium, was isolated from Arctic Ocean sediment. Here we describe the complete genome of Colwellia sp. Arc7-D. The genome has one circular chromosome of 4,305,442?bp (37.67?mol%?G?+?C content), consisting of 3526 coding genes, 77 tRNA genes, as well as five rRNA operons as 16S–23S-5S rRNA and one rRNA operon as 16S-23S-5S-5S. According to KEGG analysis, strain Arc7-D encodes 23 genes related with antioxidant activity including superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase. However, many additional genes affiliated with anti-oxidative stress were also identified, such as aconitase, thioredoxin and ascorbic acid.


April 21, 2020  |  

A New Species of the ?-Proteobacterium Francisella, F. adeliensis Sp. Nov., Endocytobiont in an Antarctic Marine Ciliate and Potential Evolutionary Forerunner of Pathogenic Species.

The study of the draft genome of an Antarctic marine ciliate, Euplotes petzi, revealed foreign sequences of bacterial origin belonging to the ?-proteobacterium Francisella that includes pathogenic and environmental species. TEM and FISH analyses confirmed the presence of a Francisella endocytobiont in E. petzi. This endocytobiont was isolated and found to be a new species, named F. adeliensis sp. nov.. F. adeliensis grows well at wide ranges of temperature, salinity, and carbon dioxide concentrations implying that it may colonize new organisms living in deeply diversified habitats. The F. adeliensis genome includes the igl and pdp gene sets (pdpC and pdpE excepted) of the Francisella pathogenicity island needed for intracellular growth. Consistently with an F. adeliensis ancient symbiotic lifestyle, it also contains a single insertion-sequence element. Instead, it lacks genes for the biosynthesis of essential amino acids such as cysteine, lysine, methionine, and tyrosine. In a genome-based phylogenetic tree, F. adeliensis forms a new early branching clade, basal to the evolution of pathogenic species. The correlations of this clade with the other clades raise doubts about a genuine free-living nature of the environmental Francisella species isolated from natural and man-made environments, and suggest to look at F. adeliensis as a pioneer in the Francisella colonization of eukaryotic organisms.


April 21, 2020  |  

Do the toll-like receptors and complement systems play equally important roles in freshwater adapted Dolly Varden char (Salvelinus malma)?

Unlike the normal anadromous lifestyle, Chinese native Dolly Varden char (Salvelinus malma) is locked in land and lives in fresh water lifetime. To explore the effect of freshwater adaption on its immune system, we constructed a pooled cDNA library of hepatopancreas and spleen of Chinese freshwater Dolly Varden char (S. malma). A total of 27,829 unigenes were generated from 31,233 high-quality transcripts and 17,670 complete open reading frames (ORF) were identified. Totally 25,809 unigenes were successfully annotated and it classified more native than adaptive immunity-associated genes, and more genes involved in toll-like receptor signal pathway than those in complement and coagulation cascades (51 vs 3), implying the relative more important role of toll-like receptors than the complement system under bacterial injection for the freshwater Dolly Varden char. These huge different numbers of TLR and complement system identified in freshwater Dolly Varden char probably caused by distinct evolution pressure patterns between fish TLR and complement system, representative by TLR3 and TLR5 as well as C4 and C6, respectively, which were under purifying and positively selecting pressure, respectively. Further seawater adaptation experiment and the comparison study with our library will no doubt be helpful to elucidate the effect of freshwater adaption of Chinese native Dolly Varden char on its immune system.Copyright © 2018 Elsevier Ltd. All rights reserved.


April 21, 2020  |  

The Isolation and Characterization of Kronos, a Novel Caulobacter Rhizosphere Phage that is Similar to Lambdoid Phages.

Despite their ubiquity, relatively few bacteriophages have been characterized. Here, we set out to explore Caulobacter bacteriophages (caulophages) in the rhizosphere and characterized Kronos, the first caulophage isolated from the rhizosphere. Kronos is a member of the Siphoviridae family since it has a long flexible tail. In addition, an analysis of the Kronos genome indicated that many of the predicted proteins were distantly related to those of bacteriophages in the lambdoid family. Consistent with this observation, we were able to demonstrate the presence of cos sites that are similar to those found at the ends of lambdoid phage genomes. Moreover, Kronos displayed a relatively rare head and tail morphology compared to other caulophages but was similar to that of the lambdoid phages. Taken together, these data indicate that Kronos is distantly related to lambdoid phages and may represent a new Siphoviridae genus.


April 21, 2020  |  

Complete genome of Pseudoalteromonas atlantica ECSMB14104, a Gammaproteobacterium inducing mussel settlement

Pseudoalteromonas is widely distributed in the marine environments and the biofilms formed by Pseudoalteromonas promote settlement of many species of invertebrates. Here, we show the complete genome of Pseudoalteromonas atlantica ECSMB14104, which was isolated from biofilms formed in the East China Sea and exhibited inducing activity on the Mytilus coruscus settlement. Complete genome of this strain containsa total of 3325 genes and the GC content of 41.02%. This genomic information is contributed to molecular mechanism of P. atlantica ECSMB14104 regulating mussel settlement.


April 21, 2020  |  

Complete genome sequence of the novel agarolytic Catenovulum-like strain CCB-QB4

Members of the genus Catenovulum are recognized for their ability to degrade algal biomass. Here we report the complete genome of Cantenovulum–like strain CCB-QB4, an agarolytic bacterium isolated from the coastal area of Penang, Malaysia. The sequenced genome is composed of a 5,663,044?bp circular chromosome and a 208,085?bp circular plasmid. It contained 4409 protein coding and 83 RNA genes, including 62 tRNAs and 21 rRNAs. The genome of CCB-QB4 contains many agarases, which correlate with the high capacity of the strain to degrade agar. Genome sequencing of CCB-QB4 reveals gene candidates of potential interest in enzymatic industries or applications in the field of polysaccharides degradation.


April 21, 2020  |  

Antarctic blackfin icefish genome reveals adaptations to extreme environments.

Icefishes (suborder Notothenioidei; family Channichthyidae) are the only vertebrates that lack functional haemoglobin genes and red blood cells. Here, we report a high-quality genome assembly and linkage map for the Antarctic blackfin icefish Chaenocephalus aceratus, highlighting evolved genomic features for its unique physiology. Phylogenomic analysis revealed that Antarctic fish of the teleost suborder Notothenioidei, including icefishes, diverged from the stickleback lineage about 77 million years ago and subsequently evolved cold-adapted phenotypes as the Southern Ocean cooled to sub-zero temperatures. Our results show that genes involved in protection from ice damage, including genes encoding antifreeze glycoprotein and zona pellucida proteins, are highly expanded in the icefish genome. Furthermore, genes that encode enzymes that help to control cellular redox state, including members of the sod3 and nqo1 gene families, are expanded, probably as evolutionary adaptations to the relatively high concentration of oxygen dissolved in cold Antarctic waters. In contrast, some crucial regulators of circadian homeostasis (cry and per genes) are absent from the icefish genome, suggesting compromised control of biological rhythms in the polar light environment. The availability of the icefish genome sequence will accelerate our understanding of adaptation to extreme Antarctic environments.


April 21, 2020  |  

Characterization of the genome of a Nocardia strain isolated from soils in the Qinghai-Tibetan Plateau that specifically degrades crude oil and of this biodegradation.

A strain of Nocardia isolated from crude oil-contaminated soils in the Qinghai-Tibetan Plateau degrades nearly all components of crude oil. This strain was identified as Nocardia soli Y48, and its growth conditions were determined. Complete genome sequencing showed that N. soli Y48 has a 7.3?Mb genome and many genes responsible for hydrocarbon degradation, biosurfactant synthesis, emulsification and other hydrocarbon degradation-related metabolisms. Analysis of the clusters of orthologous groups (COGs) and genomic islands (GIs) revealed that Y48 has undergone significant gene transfer events to adapt to changing environmental conditions (crude oil contamination). The structural features of the genome might provide a competitive edge for the survival of N. soli Y48 in oil-polluted environments and reflect the adaptation of coexisting bacteria to distinct nutritional niches.Copyright © 2018. Published by Elsevier Inc.


April 21, 2020  |  

Carbohydrate catabolic capability of a Flavobacteriia bacterium isolated from hadal water.

Flavobacteriia are abundant in many marine environments including hadal waters, as demonstrated recently. However, it is unclear how this flavobacterial population adapts to hadal conditions. In this study, extensive comparative genomic analyses were performed for the flavobacterial strain Euzebyella marina RN62 isolated from the Mariana Trench hadal water in low abundance. The complete genome of RN62 possessed a considerable number of carbohydrate-active enzymes with a different composition. There was a predominance of GH family 13 proteins compared to closely related relatives, suggesting that RN62 has preserved a certain capacity for carbohydrate utilization and that the hadal ocean may hold an organic matter reservoir distinct from the surface ocean. Additionally, RN62 possessed potential intracellular cycling of the glycogen/starch pathway, which may serve as a strategy for carbon storage and consumption in response to nutrient pulse and starvation. Moreover, the discovery of higher glycoside hydrolase dissimilarities among Flavobacteriia, compared to peptidases and transporters, suggested variation in polysaccharide utilization related traits as an important ecophysiological factor in response to environmental alterations, such as decreased labile organic carbon in hadal waters. The presence of abundant toxin exporting, transcription and signal transduction related genes in RN62 may further help to survive in hadal conditions, including high pressure/low temperature.Copyright © 2019 Elsevier GmbH. All rights reserved.


April 21, 2020  |  

A siphonous macroalgal genome suggests convergent functions of homeobox genes in algae and land plants.

Genome evolution and development of unicellular, multinucleate macroalgae (siphonous algae) are poorly known, although various multicellular organisms have been studied extensively. To understand macroalgal developmental evolution, we assembled the ~26?Mb genome of a siphonous green alga, Caulerpa lentillifera, with high contiguity, containing 9,311 protein-coding genes. Molecular phylogeny using 107 nuclear genes indicates that the diversification of the class Ulvophyceae, including C. lentillifera, occurred before the split of the Chlorophyceae and Trebouxiophyceae. Compared with other green algae, the TALE superclass of homeobox genes, which expanded in land plants, shows a series of lineage-specific duplications in this siphonous macroalga. Plant hormone signalling components were also expanded in a lineage-specific manner. Expanded transport regulators, which show spatially different expression, suggest that the structural patterning strategy of a multinucleate cell depends on diversification of nuclear pore proteins. These results not only imply functional convergence of duplicated genes among green plants, but also provide insight into evolutionary roots of green plants. Based on the present results, we propose cellular and molecular mechanisms involved in the structural differentiation in the siphonous alga. © The Author(s) 2019. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


April 21, 2020  |  

Full-length transcriptome sequences obtained by a combination of sequencing platforms applied to heat shock proteins and polyunsaturated fatty acids biosynthesis in Pyropia haitanensis

Pyropia haitanensis is a high-yield commercial seaweed in China. Pyropia haitanensis farms often suffer from problems such as severe germplasm degeneration, while the mechanisms underlying resistance to abiotic stresses remain unknown because of lacking genomic information. Although many previous studies focused on using next-generation sequencing (NGS) technologies, the short-read sequences generated by NGS generally prevent the assembly of full-length transcripts, and then limit screening functional genes. In the present study, which was based on hybrid sequencing (NGS and single-molecular real-time sequencing) of the P. haitanensis thallus transcriptome, we obtained high-quality full-length transcripts with a mean length of 2998 bp and an N50 value of 3366 bp. A total of 14,773 unigenes (93.52%) were annotated in at least one database, while approximately 60% of all unigenes were assembled by short Illumina reads. Moreover, we herein suggested that the genes involved in the biosynthesis of polyunsaturated fatty acids and heat shock proteins play an important role in the process of development and resistance to abiotic stresses in P. haitanensis. The present study, together with previously published ones, may facilitate seaweed transcriptome research.


April 21, 2020  |  

Real time monitoring of Aeromonas salmonicida evolution in response to successive antibiotic therapies in a commercial fish farm.

Our ability to predict evolutionary trajectories of pathogens in response to antibiotic pressure is one of the promising leverage to fight against the present antibiotic resistance worldwide crisis. Yet, few studies tackled this question in situ at the outbreak level, due to the difficulty to link a given pathogenic clone evolution with its precise antibiotic exposure over time. In this study, we monitored the real-time evolution of an Aeromonas salmonicida clone in response to successive antibiotic and vaccine therapies in a commercial fish farm. The clone was responsible for a four-year outbreak of furunculosis within a Recirculating Aquaculture System Salmo salar farm in China, and we reconstructed the precise tempo of mobile genetic elements (MGEs) acquisition events during this period. The resistance profile provided by the acquired MGEs closely mirrored the antibiotics used to treat the outbreak, and we evidenced that two subclonal groups developed similar resistances although unrelated MGE acquisitions. Finally, we also demonstrated the efficiency of vaccination in outbreak management and its positive effect on antibiotic resistance prevalence. Our study provides unprecedented knowledge critical to understand evolutionary trajectories of resistant pathogens outside the laboratory. © 2019 Society for Applied Microbiology and John Wiley & Sons Ltd.


April 21, 2020  |  

Comparative genome analysis provides novel insight into the interaction of Aquimarina sp. AD1, BL5 and AD10 with their macroalgal host.

The Aquimarina genus is widely distributed throughout the marine environment, however little is understood regarding its ecological role, particularly when in association with eukaryotic hosts. Here, we examine the genomes of two opportunistic pathogens, Aquimarina sp. AD1 and BL5, and a non-pathogenic strain Aquimarina sp. AD10, that were isolated from diseased individuals of the red alga Delisea pulchra. Each strain encodes multiple genes for the degradation of marine carbohydrates and vitamin biosynthesis. These traits are hypothesised to promote nutrient exchange between the Aquimarina strains and their algal host, facilitating a close symbiotic relationship. Moreover, each strain harbours the necessary genes for the assembly of a Type 9 Secretion System (T9SS) and the associated gliding motility apparatus. In addition to these common features, pathogenic strains AD1 and BL5, encode genes for the production of flexirubin type pigments and a number of unique non-ribosomal peptide synthesis (NRPS) gene clusters, suggesting a role for these uncharacterised traits in virulence. This study provides valuable insight into the potential ecological role of Aquimarina in the marine environment and the complex factors driving pathogenesis and symbiosis in this genus.Copyright © 2019 Elsevier B.V. All rights reserved.


April 21, 2020  |  

The complete genome sequence of the denitrifying bacterium Marinobacter sp. Arc7-DN-1 isolated from Arctic Ocean sediment

The general features and genome characteristics of the denitrifying bacterium Marinobacter sp. Arc7-DN-1, isolated from Arctic Ocean sediment, are described. Marinobacter sp. Arc7-DN-1 uses NO3- or NH4+ as the sole nitrogen source to grow at low temperatures. The strain can grow at a wide range of temperatures (0–30?°C) and NaCl concentration (15–90‰). The genome has one circular chromosome of 4,300,456?bp (57.64?mol%?G?+?C content), consisting of 4012 coding genes, including 50 tRNAs and three rRNA operons as 16S-23S-5S rRNA. On the basis of the KEGG analysis, strain Arc7-DN-1 encodes 43 proteins related to nitrogen metabolism, including a complete denitrifying pathway and an assimilatory nitrate reduction pathway.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.