X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Complete genome sequence of the polymyxin E (colistin)-producing Paenibacillus sp. strain B-LR.

Paenibacillus bacteria are recovered from varied niches, including human lung, rhizosphere, marine sediments, and hemolymph. Paenibacilli can have plant growth-promoting activities and be antibiotic producers. They can produce exopolysaccharides and enzymes of industrial interest. Illumina and PacBio reads were used to produce a complete genome sequence of the colistin producer Paenibacillus sp. strain B-LR.

Read More »

Sunday, July 7, 2019

Velez bacillusL-1The pear Botrytis cinerea and Penicillium bacteria of suppression role evaluation and all Genome Analysis

[Objective] Clear Velez bacillus(Bacillus S rDNA Sequence) L-1The pear Botrytis cinerea and Penicillium bacteria of suppression role clear Bacteria L-1Sterile fermentation broth antagonistic activity of stability and may be of Antagonistic mechanism. [Methods] by in vitro determination, living determination and pathogenic bacteria mycelium morphology observation evaluation StrainL-1The pear Botrytis cinerea and Penicillium bacteria of antagonistic activity. To pear Botrytis cinerea bacteria for try pathogenic bacteria use Oxford Cup method determination StrainL-1Sterile fermentation broth antagonistic activity of stability. UsePacbio rsiiThree generations sequencing technology determinationL-1Of all gene sequence will all gene sequence and gene protein sequence databaseBLASTComparison Analysis prediction StrainL-1May be of…

Read More »

Sunday, July 7, 2019

The ß-lactamase gene profile and a plasmid-carrying multiple heavy metal resistance genes of Enterobacter cloacae.

In this work, by high-throughput sequencing, antibiotic resistance genes, including class A (blaCTX-M, blaZ, blaTEM, blaVEB, blaKLUC, and blaSFO), class C (blaSHV, blaDHA, blaMIR, blaAZECL-29, and blaACT), and class D (blaOXA) ß-lactamase genes, were identified among the pooled genomic DNA from 212 clinical Enterobacter cloacae isolates. Six blaMIR-positive E. cloacae strains were identified, and pulsed-field gel electrophoresis (PFGE) showed that these strains were not clonally related. The complete genome of the blaMIR-positive strain (Y546) consisted of both a chromosome (4.78?Mb) and a large plasmid pY546 (208.74?kb). The extended-spectrum ß-lactamases (ESBLs) (blaSHV-12 and blaCTX-M-9a) and AmpC (blaMIR) were encoded on the…

Read More »

Sunday, July 7, 2019

Alignment-free genome comparison enables accurate geographic sourcing of white oak DNA.

The application of genomic data and bioinformatics for the identification of restricted or illegally-sourced natural products is urgently needed. The taxonomic identity and geographic provenance of raw and processed materials have implications in sustainable-use commercial practices, and relevance to the enforcement of laws that regulate or restrict illegally harvested materials, such as timber. Improvements in genomics make it possible to capture and sequence partial-to-complete genomes from challenging tissues, such as wood and wood products.In this paper, we report the success of an alignment-free genome comparison method, [Formula: see text] that differentiates different geographic sources of white oak (Quercus) species with…

Read More »

Sunday, July 7, 2019

Hardwood tree genomics: Unlocking woody plant biology.

Woody perennial angiosperms (i.e., hardwood trees) are polyphyletic in origin and occur in most angiosperm orders. Despite their independent origins, hardwoods have shared physiological, anatomical, and life history traits distinct from their herbaceous relatives. New high-throughput DNA sequencing platforms have provided access to numerous woody plant genomes beyond the early reference genomes of Populus and Eucalyptus, references that now include willow and oak, with pecan and chestnut soon to follow. Genomic studies within these diverse and undomesticated species have successfully linked genes to ecological, physiological, and developmental traits directly. Moreover, comparative genomic approaches are providing insights into speciation events while…

Read More »

Sunday, July 7, 2019

De novo genome assembly of the olive fruit fly (Bactrocera oleae) developed through a combination of linked-reads and long-read technologies

Long-read sequencing has greatly contributed to the generation of high quality assemblies, albeit at a high cost. It is also not always clear how to combine sequencing platforms. We sequenced the genome of the olive fruit fly (Bactrocera oleae), the most important pest in the olive fruits agribusiness industry, using Illumina short-reads, mate-pairs, 10x Genomics linked-reads, Pacific Biosciences (PacBio), and Oxford Nanopore Technologies (ONT). The 10x linked-reads assembly gave the most contiguous assembly with an N50 of 2.16 Mb. Scaffolding the linked-reads assembly using long-reads from ONT gave a more contiguous assembly with scaffold N50 of 4.59 Mb. We also…

Read More »

Sunday, July 7, 2019

The complete genome sequence of a marine sponge-associated bacteria, Bacillus safensis KCTC 12796BP, which produces the anti-allergic compounds

The full genome sequence of Bacillus safensis KCTC 12796BP which had been isolated from the marine sponge in the seawater of Jeju Island, was determined by Pac-Bio next- generation sequencing system. A circular chromosome in the length of 3,935,874 bp was obtained in addition to a circular form of plasmid having 36,690 bp. The G + C content of chromosome was 41.4%, and that of plasmid was 37.3%. The number of deduced CDSs in the chromosome was 3,980, whereas 36 CDS regions were determined in a plasmid. Among the deduced CDSs in chromosome, 81 tRNA genes and 24 rRNA genes…

Read More »

1 155 156 157

Subscribe for blog updates:

Archives