A major barrier to both metabolic engineering and fundamental biological studies is the lack of genetic tools in most microorganisms. One example is Clostridium thermocellum ATCC 27405T, where genetic tools are not available to help validate decades of hypotheses. A significant barrier to DNA transformation is restriction-modification systems, which defend against foreign DNA methylated differently than the host. To determine the active restriction-modification systems in this strain, we performed complete methylome analysis via single-molecule, real-time sequencing to detect 6-methyladenine and 4-methylcytosine and the rarely used whole-genome bisulfite sequencing to detect 5-methylcytosine. Multiple active systems were identified, and corresponding DNA methyltransferases…
Staphylococcus epidermidis is a significant opportunistic pathogen of humans. Molecular studies in this species have been hampered by the presence of restriction-modification (RM) systems that limit introduction of foreign DNA. Here we establish the complete genomes and methylomes for seven clinically significant, genetically diverse S. epidermidis isolates and perform the first systematic genomic analyses of the type I RM systems within both S. epidermidis and Staphylococcus aureus. Our analyses revealed marked differences in the gene arrangement, chromosomal location and movement of type I RM systems between the two species. Unlike S. aureus, S. epidermidis type I RM systems demonstrate extensive…
Helicobacter pylori represents an interesting model of bacterial pathogenesis given that most infections are asymptomatic, while a minority of infections cause severe gastric disease. H pylori strain B128 7.13 is used extensively to understand H pylori pathophysiology. Due to extensive restriction-modification systems, the fact that only some H pylori strains are naturally transformable, the inability of common plasmid and transposon vectors to replicate in this bacterium, as well as the limited number of antibiotic cassettes that are functional in H pylori, there are relatively few genetic tools for the mutagenesis of this bacterium.Here, we use PacBio and Illumina sequencing to reveal the complete genome…
DNA methylation is pervasive across all domains of life. In bacteria, the presence of N6-methyladenosine (m6A) has been detected among diverse species, yet the contribution of m6A to the regulation of gene expression is unclear in many organisms. Here we investigated the impact of DNA methylation on gene expression and virulence within the human pathogen Streptococcus pyogenes, or Group A Streptococcus. Single Molecule Real-Time sequencing and subsequent methylation analysis identified 412 putative m6A sites throughout the 1.8 Mb genome. Deletion of the Restriction, Specificity, and Methylation gene subunits (?RSM strain) of a putative Type I restriction modification system lost all…
Prokaryotic DNA contains three types of methylation: N6-methyladenine, N4-methylcytosine and 5-methylcytosine. The lack of tools to analyse the frequency and distribution of methylated residues in bacterial genomes has prevented a full understanding of their functions. Now, advances in DNA sequencing technology, including single-molecule, real-time sequencing and nanopore-based sequencing, have provided new opportunities for systematic detection of all three forms of methylated DNA at a genome-wide scale and offer unprecedented opportunities for achieving a more complete understanding of bacterial epigenomes. Indeed, as the number of mapped bacterial methylomes approaches 2,000, increasing evidence supports roles for methylation in regulation of gene expression,…
In 1995 a severe haemolytic-uremic syndrome (HUS) outbreak in Adelaide occurred. A recent genomic analysis of Shiga toxigenic Escherichia coli (STEC) O111:H- strains 95JB1 and 95NR1 from this outbreak found that the more virulent isolate, 95NR1, harboured two additional copies of the Shiga toxin 2 (Stx2) genes encoded within prophage regions. The structure of the Stx2-converting prophages could not be fully resolved using short-read sequence data alone and it was not clear if there were other genomic differences between 95JB1 and 95NR1. In this study we have used Pacific Biosciences (PacBio) single molecule real-time (SMRT) sequencing to characterise the genome…
Genome-wide analysis of DNA methylation patterns using single molecule real-time DNA sequencing has boosted the number of publicly available methylomes. However, there is a lack of tools coupling methylation patterns and the corresponding methyltransferase genes. Here we demonstrate a high-throughput method for coupling methyltransferases with their respective motifs, using automated cloning and analysing the methyltransferases in vectors carrying a strain-specific cassette containing all potential target sites. To validate the method, we analyse the genomes of the thermophile Moorella thermoacetica and the mesophile Acetobacterium woodii, two acetogenic bacteria having substantially modified genomes with 12 methylation motifs and a total of 23…