X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Phylogenetic reconciliation reveals the natural history of glycopeptide antibiotic biosynthesis and resistance.

Glycopeptide antibiotics are produced by Actinobacteria through biosynthetic gene clusters that include genes supporting their regulation, synthesis, export and resistance. The chemical and biosynthetic diversities of glycopeptides are the product of an intricate evolutionary history. Extracting this history from genome sequences is difficult as conservation of the individual components of these gene clusters is variable and each component can have a different trajectory. We show that glycopeptide biosynthesis and resistance in Actinobacteria maps to approximately 150-400 million years ago. Phylogenetic reconciliation reveals that the precursors of glycopeptide biosynthesis are far older than other components, implying that these clusters arose from…

Read More »

Tuesday, April 21, 2020

Defining transgene insertion sites and off-target effects of homology-based gene silencing informs the use of functional genomics tools in Phytophthora infestans.

DNA transformation and homology-based transcriptional silencing are frequently used to assess gene function in Phytophthora. Since unplanned side-effects of these tools are not well-characterized, we used P. infestans to study plasmid integration sites and whether knockdowns caused by homology-dependent silencing spreads to other genes. Insertions occurred both in gene-dense and gene-sparse regions but disproportionately near the 5′ ends of genes, which disrupted native coding sequences. Microhomology at the recombination site between plasmid and chromosome was common. Studies of transformants silenced for twelve different gene targets indicated that neighbors within 500-nt were often co-silenced, regardless of whether hairpin or sense constructs…

Read More »

Tuesday, April 21, 2020

Evolutionary superscaffolding and chromosome anchoring to improve Anopheles genome assemblies

Background New sequencing technologies have lowered financial barriers to whole genome sequencing, but resulting assemblies are often fragmented and far from textquoteleftfinishedtextquoteright. Updating multi-scaffold drafts to chromosome-level status can be achieved through experimental mapping or re-sequencing efforts. Avoiding the costs associated with such approaches, comparative genomic analysis of gene order conservation (synteny) to predict scaffold neighbours (adjacencies) offers a potentially useful complementary method for improving draft assemblies.Results We employed three gene synteny-based methods applied to 21 Anopheles mosquito assemblies to produce consensus sets of scaffold adjacencies. For subsets of the assemblies we integrated these with additional supporting data to confirm…

Read More »

Tuesday, April 21, 2020

The comparative genomics and complex population history of Papio baboons.

Recent studies suggest that closely related species can accumulate substantial genetic and phenotypic differences despite ongoing gene flow, thus challenging traditional ideas regarding the genetics of speciation. Baboons (genus Papio) are Old World monkeys consisting of six readily distinguishable species. Baboon species hybridize in the wild, and prior data imply a complex history of differentiation and introgression. We produced a reference genome assembly for the olive baboon (Papio anubis) and whole-genome sequence data for all six extant species. We document multiple episodes of admixture and introgression during the radiation of Papio baboons, thus demonstrating their value as a model of…

Read More »

Tuesday, April 21, 2020

Complete Genome Sequence of “Candidatus Thioglobus sp.” Strain NP1, an Open-Ocean Isolate from the SUP05 Clade of Marine Gammaproteobacteria

Candidatus Thioglobus sp.textquotedblright strain NP1 is an open-ocean isolate from the SUP05 clade of Gammaproteobacteria. Whole-genome comparisons of strain NP1 to other sequenced isolates from the SUP05 clade indicate that it represents a new species of SUP05 that lacks the ability to fix inorganic carbon using the Calvin-Benson-Bassham cycle.

Read More »

Tuesday, April 21, 2020

Comprehensive evaluation of non-hybrid genome assembly tools for third-generation PacBio long-read sequence data.

Long reads obtained from third-generation sequencing platforms can help overcome the long-standing challenge of the de novo assembly of sequences for the genomic analysis of non-model eukaryotic organisms. Numerous long-read-aided de novo assemblies have been published recently, which exhibited superior quality of the assembled genomes in comparison with those achieved using earlier second-generation sequencing technologies. Evaluating assemblies is important in guiding the appropriate choice for specific research needs. In this study, we evaluated 10 long-read assemblers using a variety of metrics on Pacific Biosciences (PacBio) data sets from different taxonomic categories with considerable differences in genome size. The results allowed…

Read More »

Tuesday, April 21, 2020

Streptococcus periodonticum sp. nov., Isolated from Human Subgingival Dental Plaque of Periodontitis Lesion.

A novel facultative anaerobic and Gram-stain-positive coccus, designated strain ChDC F135T, was isolated from human subgingival dental plaque of periodontitis lesion and was characterized by polyphasic taxonomic analysis. The 16S rRNA gene (16S rDNA) sequence of strain ChDC F135T was closest to that of Streptococcus sinensis HKU4T (98.2%), followed by Streptococcus intermedia SK54T (97.0%), Streptococcus constellatus NCTC11325T (96.0%), and Streptococcus anginosus NCTC 10713T (95.7%). In contrast, phylogenetic analysis based on the superoxide dismutase gene (sodA) and the RNA polymerase beta-subunit gene (rpoB) showed that the nucleotide sequence similarities of strain ChDC F135T were highly similar to the corresponding genes of…

Read More »

Tuesday, April 21, 2020

Tools and Strategies for Long-Read Sequencing and De Novo Assembly of Plant Genomes.

The commercial release of third-generation sequencing technologies (TGSTs), giving long and ultra-long sequencing reads, has stimulated the development of new tools for assembling highly contiguous genome sequences with unprecedented accuracy across complex repeat regions. We survey here a wide range of emerging sequencing platforms and analytical tools for de novo assembly, provide background information for each of their steps, and discuss the spectrum of available options. Our decision tree recommends workflows for the generation of a high-quality genome assembly when used in combination with the specific needs and resources of a project.Copyright © 2019 Elsevier Ltd. All rights reserved.

Read More »

Tuesday, April 21, 2020

Genome Sequence of Jaltomata Addresses Rapid Reproductive Trait Evolution and Enhances Comparative Genomics in the Hyper-Diverse Solanaceae.

Within the economically important plant family Solanaceae, Jaltomata is a rapidly evolving genus that has extensive diversity in flower size and shape, as well as fruit and nectar color, among its ~80 species. Here, we report the whole-genome sequencing, assembly, and annotation, of one representative species (Jaltomata sinuosa) from this genus. Combining PacBio long reads (25×) and Illumina short reads (148×) achieved an assembly of ~1.45?Gb, spanning ~96% of the estimated genome. Ninety-six percent of curated single-copy orthologs in plants were detected in the assembly, supporting a high level of completeness of the genome. Similar to other Solanaceous species, repetitive…

Read More »

Tuesday, April 21, 2020

Heterochromatin-enriched assemblies reveal the sequence and organization of the Drosophila melanogaster Y chromosome.

Heterochromatic regions of the genome are repeat-rich and poor in protein coding genes, and are therefore underrepresented in even the best genome assemblies. One of the most difficult regions of the genome to assemble are sex-limited chromosomes. The Drosophila melanogaster Y chromosome is entirely heterochromatic, yet has wide-ranging effects on male fertility, fitness, and genome-wide gene expression. The genetic basis of this phenotypic variation is difficult to study, in part because we do not know the detailed organization of the Y chromosome. To study Y chromosome organization in D. melanogaster, we develop an assembly strategy involving the in silico enrichment…

Read More »

Tuesday, April 21, 2020

Oenococcus sicerae sp. nov., isolated from French cider.

Two Gram-stain-positive, small ellipsoidal cocci, non-motile, oxidase- and catalase-negative, and facultative anaerobic strains (UCMA15228T and UCMA17102) were isolated in France, from fermented apple juices (ciders). The 16S rRNA gene sequence was identical between the two isolates and showed 97 % similarity with respect to the closest related species Oenococcus oeni and O. kitaharae. Therefore, the two isolates were classified within the genus Oenococcus. The phylogeny based on the pheS gene sequences also confirmed the position of the new taxon. DNA-DNA hybridizations based on in silico genome-to-genome comparisons (GGDC) and Average Nucleotide Identity (ANI) values, as well as species-specific PCR, validated…

Read More »

Tuesday, April 21, 2020

Tengunoibacter tsumagoiensis gen. nov., sp. nov., Dictyobacter kobayashii sp. nov., Dictyobacter alpinus sp. nov., and description of Dictyobacteraceae fam. nov. within the order Ktedonobacterales isolated from Tengu-no-mugimeshi, a soil-like granular mass of micro-organisms, and emended descriptions of the genera Ktedonobacter and Dictyobacter.

Three mesophilic, Gram-stain-positive, aerobic bacterial strains, designated Uno3T, Uno11T and Uno16T, were isolated from a soil-like granular micro-organism mass (termed Tengu-no-mugimeshi) collected from Tsumagoi, Gunma, Japan. They grow at 11-37?°C?and pH 4.0-8.0, form branched mycelia, and have a G+C?content between 49.4-50.3?mol%. The major menaquinone and fatty acid of Uno3T are MK-9 and iso-C16?:?0, respectively, whereas Uno11T and Uno16T share MK-9 (H2) and C16?:?1-2OH. The major cell-wall sugars are mannose (Uno3T and Uno11T) and glucose (Uno16T). Phylogenetic analysis based on 16S rRNA gene sequences indicated that these three strains belong to the order Ktedonobacterales and are most closely related to Dictyobacter…

Read More »

Tuesday, April 21, 2020

A siphonous macroalgal genome suggests convergent functions of homeobox genes in algae and land plants.

Genome evolution and development of unicellular, multinucleate macroalgae (siphonous algae) are poorly known, although various multicellular organisms have been studied extensively. To understand macroalgal developmental evolution, we assembled the ~26?Mb genome of a siphonous green alga, Caulerpa lentillifera, with high contiguity, containing 9,311 protein-coding genes. Molecular phylogeny using 107 nuclear genes indicates that the diversification of the class Ulvophyceae, including C. lentillifera, occurred before the split of the Chlorophyceae and Trebouxiophyceae. Compared with other green algae, the TALE superclass of homeobox genes, which expanded in land plants, shows a series of lineage-specific duplications in this siphonous macroalga. Plant hormone signalling…

Read More »

Tuesday, April 21, 2020

Comparative Phylogenomics, a Stepping Stone for Bird Biodiversity Studies

Birds are a group with immense availability of genomic resources, and hundreds of forthcoming genomes at the doorstep. We review recent developments in whole genome sequencing, phylogenomics, and comparative genomics of birds. Short read based genome assemblies are common, largely due to efforts of the Bird 10K genome project (B10K). Chromosome-level assemblies are expected to increase due to improved long-read sequencing. The available genomic data has enabled the reconstruction of the bird tree of life with increasing confidence and resolution, but challenges remain in the early splits of Neoaves due to their explosive diversification after the Cretaceous-Paleogene (K-Pg) event. Continued…

Read More »

Wednesday, February 26, 2020

Progress Toward a Low Budget Reference Grade Genome Assembly

Reference quality de novo genome assemblies were once solely the domain of large, well-funded genome projects. While next-generation short read technology removed some of the cost barriers, accurate chromosome-scale assembly remains a real challenge. Here we present efforts to de novo assemble the goat (Capra hircus) genome. Through the combination of single-molecule technologies from Pacific Biosciences (sequencing) and BioNano Genomics (optical mapping) coupled with high-throughput chromosome conformation capture sequencing (Hi-C), an inbred San Clemente goat genome has been sequenced and assembled to a high degree of completeness at a relatively modest cost. Starting with 38 million PacBio reads, we integrated…

Read More »

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »