Menu
June 1, 2021  |  

Genomic Architecture of the KIR and MHC-B and -C Regions in Orangutan

PacBio 2013 User Group Meeting Presentation Slides: Lisbeth Guethlein from Stanford University School of Medicine looked at highly repetitive and variable immune regions of the orangutan genome. Guethlein reported that “PacBio managed to accomplish in a week what I have been working on for a couple years” (with Sanger sequencing), and the results were concordant. “Long story short, I was a happy customer.”


June 1, 2021  |  

HLA variant identification techniques

The Human Leukocyte Antigen (HLA) genes located on chromosome 6 are responsible for regulating immune function via antigen presentation and are one of the determining factors for stem cell and organ transplantation compatibility. Additionally various alleles within this region have been implicated in autoimmune disorders, cancer, vaccine response and both non-infectious and infectious disease risk. The HLA region is highly variable; containing repetitive regions; and co-dominantly expressed genes. This complicates short read mapping and means that assessing the effect of variation within a gene requires full phase information to resolve haplotypes.One solution to the problem of HLA identification is the use of statistical inference to suggest the most likely diploid alleles given the genotypes observed. The assumption of this approach is the availability of an extensive reference panel. Whilst there exists good population genetics data for imputing European populations, there remains a paucity of information about variation in African populations. Filling this gap is one of the aims of the Genome Diversity in Africa Project and as a first step we are performing a pilot study to identify the optimal method for determining HLA type information for large numbers of samples from African populations.To that end we have obtained samples from 125 consented African participants selected from 5 populations across Africa (Morrocan, Ashanti, Igbo, Kalenjin, and Zulu). The methods included in our pilot study are Sanger sequencing (ABI), NGS on HiSeqX Ten platform (Illumina); long-range PCR combined with single molecule real-time (SMRT) sequencing (PacBio); and for a subset of samples library preparation on GemCode Platform (10x Genomics), which delivers valuable long range contextual information, combined with Illumina NGS sequencing.Results from capillary sequencing suggests the presence of a minimum of two novel alleles. Long Range PCR have been performed initially on a subset of samples using both primers sourced from GenDX and designed as described in Shiina et al (2012). Initial results from both primer sets were promising on Promega DNA test samples but only the GenDX primers proved effective on the African samples, producing consistently PCR products of the expected size in the Igbo, Ashanti, Morrocan and Zulu samples. We will present early results from our evaluation of the different sequencing technologies


June 1, 2021  |  

Resolving KIR genotypes and haplotypes simultaneously using Single Molecule, Real-Time Sequencing

The killer immunoglobulin-like receptors (KIR) genes belong to the immunoglobulin superfamily and are widely studied due to the critical role they play in coordinating the innate immune response to infection and disease. Highly accurate, contiguous, long reads, like those generated by SMRT Sequencing, when combined with target-enrichment protocols, provide a straightforward strategy for generating complete de novo assembled KIR haplotypes. We have explored two different methods to capture the KIR region; one applying the use of fosmid clones and one using Nimblegen capture.


June 1, 2021  |  

Whole gene sequencing of KIR-3DL1 with SMRT Sequencing and the distribution of allelic variants in different ethnic groups

The killer-cell immunoglobulin-like receptor (KIR) gene family are involved in immune modulation during viral infection, autoimmune disease and in allogeneic stem cell transplantation. Most KIR gene diversity studies and their impact on the transplant outcome is performed by gene absence/presence assays. However, it is well known that KIR gene allelic variations have biological significance. Allele level typing of KIR genes has been very challenging until recently due to the homologous nature of those genes and very long intronic sequences. SMRT (Single Molecule Real-Time) Sequencing generates average long reads of 10 to 15 kb and allows us to obtain in-phase long sequence reads. We have developed a PCR assay for SMRT Sequencing on the PacBio RS II platform in our lab for 3DL1 whole gene sequencing. This approach allows us to obtain allele level typing for 3DL1 genes and could serve as a model to type other KIR genes at allelic level.


June 1, 2021  |  

Screening and characterization of causative structural variants for bipolar disorder in a significantly linked chromosomal region onXq24-q27 in an extended pedigree from a genetic isolate

Bipolar disorder (BD) is a phenotypically and genetically complex and debilitating neurological disorder that affects 1% of the worldwide population. There is compelling evidence from family, twin and adoption studies supporting the involvement of a genetic predisposition in BD with estimated heritability up to ~ 80%. The risk in first-degree relatives is ten times higher than in the general population. Linkage and association studies have implicated multiple putative chromosomal loci for BP susceptibility, however no disease genes have been identified to date.


June 1, 2021  |  

T-cell receptor profiling using PacBio sequencing of SMARTer libraries

T-cells play a central part in the immune response in humans and related species. T-cell receptors (TCRs), heterodimers located on the T-cell surface, specifically bind foreign antigens displayed on the MHC complex of antigen-presenting cells. The wide spectrum of potential antigens is addressed by the diversity of TCRs created by V(D)J recombination. Profiling this repertoire of TCRs could be useful from, but not limited to, diagnosis, monitoring response to treatments, and examining T-cell development and diversification.


April 21, 2020  |  

Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases.

The widespread occurrence of repetitive stretches of DNA in genomes of organisms across the tree of life imposes fundamental challenges for sequencing, genome assembly, and automated annotation of genes and proteins. This multi-level problem can lead to errors in genome and protein databases that are often not recognized or acknowledged. As a consequence, end users working with sequences with repetitive regions are faced with ‘ready-to-use’ deposited data whose trustworthiness is difficult to determine, let alone to quantify. Here, we provide a review of the problems associated with tandem repeat sequences that originate from different stages during the sequencing-assembly-annotation-deposition workflow, and that may proliferate in public database repositories affecting all downstream analyses. As a case study, we provide examples of the Atlantic cod genome, whose sequencing and assembly were hindered by a particularly high prevalence of tandem repeats. We complement this case study with examples from other species, where mis-annotations and sequencing errors have propagated into protein databases. With this review, we aim to raise the awareness level within the community of database users, and alert scientists working in the underlying workflow of database creation that the data they omit or improperly assemble may well contain important biological information valuable to others. © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.


April 21, 2020  |  

Acquired N-Linked Glycosylation Motifs in B-Cell Receptors of Primary Cutaneous B-Cell Lymphoma and the Normal B-Cell Repertoire.

Primary cutaneous follicle center lymphoma (PCFCL) is a rare mature B-cell lymphoma with an unknown etiology. PCFCL resembles follicular lymphoma (FL) by cytomorphologic and microarchitectural criteria. FL B cells are selected for N-linked glycosylation motifs in their B-cell receptors (BCRs) that are acquired during continuous somatic hypermutation. The stimulation of mannosylated BCR by lectins on the tumor microenvironment is therefore a candidate driver in FL pathogenesis. We investigated whether the same mechanism could play a role in PCFCL pathogenesis. Full-length functional variable, diversity, and joining gene sequences of 18 PCFCL and 8 primary cutaneous diffuse large B-cell lymphoma, leg-type were identified by unbiased Anchoring Reverse Transcription of Immunoglobulin Sequences and Amplification by Nested PCR and BCR reconstruction from RNA sequencing data. Low BCR variation demonstrated negligible ongoing somatic hypermutation in PCFCL and primary cutaneous diffuse large B-cell lymphoma, leg-type, and indicated that the PCFCL microarchitecture does not act as a functional germinal center. Similar to FL but in contrast to primary cutaneous diffuse large B-cell lymphoma, leg-type, BCR genes of 15 PCFCLs (83%) had acquired N-linked glycosylation motifs. These motifs were located at the BCR positions converted to N-linked glycosylation motifs in normal B-cell repertoires with low prevalence but mostly at different positions than those found in FL. The cutaneous localization of PCFCL might suggest a role for lectins from commensal skin bacteria in PCFCL lymphomagenesis.Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

RNA sequencing: the teenage years.

Over the past decade, RNA sequencing (RNA-seq) has become an indispensable tool for transcriptome-wide analysis of differential gene expression and differential splicing of mRNAs. However, as next-generation sequencing technologies have developed, so too has RNA-seq. Now, RNA-seq methods are available for studying many different aspects of RNA biology, including single-cell gene expression, translation (the translatome) and RNA structure (the structurome). Exciting new applications are being explored, such as spatial transcriptomics (spatialomics). Together with new long-read and direct RNA-seq technologies and better computational tools for data analysis, innovations in RNA-seq are contributing to a fuller understanding of RNA biology, from questions such as when and where transcription occurs to the folding and intermolecular interactions that govern RNA function.


April 21, 2020  |  

The Chinese chestnut genome: a reference for species restoration

Forest tree species are increasingly subject to severe mortalities from exotic pests, diseases, and invasive organisms, accelerated by climate change. Forest health issues are threatening multiple species and ecosystem sustainability globally. While sources of resistance may be available in related species, or among surviving trees, introgression of resistance genes into threatened tree species in reasonable time frames requires genome-wide breeding tools. Asian species of chestnut (Castanea spp.) are being employed as donors of disease resistance genes to restore native chestnut species in North America and Europe. To aid in the restoration of threatened chestnut species, we present the assembly of a reference genome with chromosome-scale sequences for Chinese chestnut (C. mollissima), the disease-resistance donor for American chestnut restoration. We also demonstrate the value of the genome as a platform for research and species restoration, including new insights into the evolution of blight resistance in Asian chestnut species, the locations in the genome of ecologically important signatures of selection differentiating American chestnut from Chinese chestnut, the identification of candidate genes for disease resistance, and preliminary comparisons of genome organization with related species.


April 21, 2020  |  

Complete genome sequence provides insights into the quorum sensing-related spoilage potential of Shewanella baltica 128 isolated from spoiled shrimp.

Shewanella baltica 128 is a specific spoilage organism (SSO) isolated from the refrigerated shrimp that results in shrimp spoilage. This study reported the complete genome sequencing of this strain, with the primary annotations associated with amino acid transport and metabolism (8.66%), indicating that S. baltica 128 has good potential for degrading proteins. In vitro experiments revealed Shewanella baltica 128 could adapt to the stress conditions by regulating its growth and biofilm formation. Genes that related to the spoilage-related metabolic pathways, including trimethylamine metabolism (torT), sulfur metabolism (cysM), putrescine metabolism (speC), biofilm formation (rpoS) and serine protease production (degS), were identified. Genes (LuxS, pfs, LuxR and qseC) that related to the specific QS system were also identified. Complete genome sequence of S. baltica 128 provide insights into the QS-related spoilage potential, which might provide novel information for the development of new approaches for spoilage detection and prevention based on QS target.Copyright © 2019. Published by Elsevier Inc.


April 21, 2020  |  

Insect genomes: progress and challenges.

In the wake of constant improvements in sequencing technologies, numerous insect genomes have been sequenced. Currently, 1219 insect genome-sequencing projects have been registered with the National Center for Biotechnology Information, including 401 that have genome assemblies and 155 with an official gene set of annotated protein-coding genes. Comparative genomics analysis showed that the expansion or contraction of gene families was associated with well-studied physiological traits such as immune system, metabolic detoxification, parasitism and polyphagy in insects. Here, we summarize the progress of insect genome sequencing, with an emphasis on how this impacts research on pest control. We begin with a brief introduction to the basic concepts of genome assembly, annotation and metrics for evaluating the quality of draft assemblies. We then provide an overview of genome information for numerous insect species, highlighting examples from prominent model organisms, agricultural pests and disease vectors. We also introduce the major insect genome databases. The increasing availability of insect genomic resources is beneficial for developing alternative pest control methods. However, many opportunities remain for developing data-mining tools that make maximal use of the available insect genome resources. Although rapid progress has been achieved, many challenges remain in the field of insect genomics. © 2019 The Royal Entomological Society.


April 21, 2020  |  

Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits.

The ruminants are one of the most successful mammalian lineages, exhibiting morphological and habitat diversity and containing several key livestock species. To better understand their evolution, we generated and analyzed de novo assembled genomes of 44 ruminant species, representing all six Ruminantia families. We used these genomes to create a time-calibrated phylogeny to resolve topological controversies, overcoming the challenges of incomplete lineage sorting. Population dynamic analyses show that population declines commenced between 100,000 and 50,000 years ago, which is concomitant with expansion in human populations. We also reveal genes and regulatory elements that possibly contribute to the evolution of the digestive system, cranial appendages, immune system, metabolism, body size, cursorial locomotion, and dentition of the ruminants. Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


April 21, 2020  |  

A Novel Bacteriophage Exclusion (BREX) System Encoded by the pglX Gene in Lactobacillus casei Zhang.

The bacteriophage exclusion (BREX) system is a novel prokaryotic defense system against bacteriophages. To our knowledge, no study has systematically characterized the function of the BREX system in lactic acid bacteria. Lactobacillus casei Zhang is a probiotic bacterium originating from koumiss. By using single-molecule real-time sequencing, we previously identified N6-methyladenine (m6A) signatures in the genome of L. casei Zhang and a putative methyltransferase (MTase), namely, pglX This work further analyzed the genomic locus near the pglX gene and identified it as a component of the BREX system. To decipher the biological role of pglX, an L. casei Zhang pglX mutant (?pglX) was constructed. Interestingly, m6A methylation of the 5′-ACRCAG-3′ motif was eliminated in the ?pglX mutant. The wild-type and mutant strains exhibited no significant difference in morphology or growth performance in de Man-Rogosa-Sharpe (MRS) medium. A significantly higher plasmid acquisition capacity was observed for the ?pglX mutant than for the wild type if the transformed plasmids contained pglX recognition sites (i.e., 5′-ACRCAG-3′). In contrast, no significant difference was observed in plasmid transformation efficiency between the two strains when plasmids lacking pglX recognition sites were tested. Moreover, the ?pglX mutant had a lower capacity to retain the plasmids than the wild type, suggesting a decrease in genetic stability. Since the Rebase database predicted that the L. casei PglX protein was bifunctional, as both an MTase and a restriction endonuclease, the PglX protein was heterologously expressed and purified but failed to show restriction endonuclease activity. Taken together, the results show that the L. casei Zhang pglX gene is a functional adenine MTase that belongs to the BREX system.IMPORTANCELactobacillus casei Zhang is a probiotic that confers beneficial effects on the host, and it is thus increasingly used in the dairy industry. The possession of an effective bacterial immune system that can defend against invasion of phages and exogenous DNA is a desirable feature for industrial bacterial strains. The bacteriophage exclusion (BREX) system is a recently described phage resistance system in prokaryotes. This work confirmed the function of the BREX system in L. casei and that the methyltransferase (pglX) is an indispensable part of the system. Overall, our study characterizes a BREX system component gene in lactic acid bacteria. Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Streptococcus oralis subsp. dentisani Produces Monolateral Serine-Rich Repeat Protein Fibrils, One of Which Contributes to Saliva Binding via Sialic Acid.

Our studies reveal that the oral colonizer and cause of infective endocarditis Streptococcus oralis subsp. dentisani displays a striking monolateral distribution of surface fibrils. Furthermore, our data suggest that these fibrils impact the structure of adherent bacterial chains. Mutagenesis studies indicate that these fibrils are dependent on three serine-rich repeat proteins (SRRPs), here named fibril-associated protein A (FapA), FapB, and FapC, and that each SRRP forms a different fibril with a distinct distribution. SRRPs are a family of bacterial adhesins that have diverse roles in adhesion and that can bind to different receptors through modular nonrepeat region domains. Amino acid sequence and predicted structural similarity searches using the nonrepeat regions suggested that FapA may contribute to interspecies interactions, that FapA and FapB may contribute to intraspecies interactions, and that FapC may contribute to sialic acid binding. We demonstrate that a fapC mutant was significantly reduced in binding to saliva. We confirmed a role for FapC in sialic acid binding by demonstrating that the parental strain was significantly reduced in adhesion upon addition of a recombinantly expressed, sialic acid-specific, carbohydrate binding module, while the fapC mutant was not reduced. However, mutation of a residue previously shown to be essential for sialic acid binding did not decrease bacterial adhesion, leaving the precise mechanism of FapC-mediated adhesion to sialic acid to be defined. We also demonstrate that the presence of any one of the SRRPs is sufficient for efficient biofilm formation. Similar structures were observed on all infective endocarditis isolates examined, suggesting that this distribution is a conserved feature of this S. oralis subspecies.Copyright © 2019 American Society for Microbiology.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.