fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Improved OTU-picking using long-read 16S rRNA gene amplicon sequencing and generic hierarchical clustering

BACKGROUND: High-throughput bacterial 16S rRNA gene sequencing followed by clustering of short sequences into operational taxonomic units (OTUs) is widely used for microbiome profiling. However, clustering of short 16S rRNA gene reads into biologically meaningful OTUs is challenging, in part because nucleotide variation along the 16S rRNA gene is only partially captured by short reads. The recent emergence of long-read platforms, such as single-molecule real-time (SMRT) sequencing from Pacific Biosciences, offers the potential for improved taxonomic and phylogenetic profiling. Here, we evaluate the performance of long- and short-read 16S rRNA gene sequencing using simulated and experimental data, followed by OTU…

Read More »

Sunday, September 22, 2019

MetaSort untangles metagenome assembly by reducing microbial community complexity.

Most current approaches to analyse metagenomic data rely on reference genomes. Novel microbial communities extend far beyond the coverage of reference databases and de novo metagenome assembly from complex microbial communities remains a great challenge. Here we present a novel experimental and bioinformatic framework, metaSort, for effective construction of bacterial genomes from metagenomic samples. MetaSort provides a sorted mini-metagenome approach based on flow cytometry and single-cell sequencing methodologies, and employs new computational algorithms to efficiently recover high-quality genomes from the sorted mini-metagenome by the complementary of the original metagenome. Through extensive evaluations, we demonstrated that metaSort has an excellent and…

Read More »

Sunday, September 22, 2019

Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes.

Pan-bacterial 16S rRNA microbiome surveys performed with massively parallel DNA sequencing technologies have transformed community microbiological studies. Current 16S profiling methods, however, fail to provide sufficient taxonomic resolution and accuracy to adequately perform species-level associative studies for specific conditions. This is due to the amplification and sequencing of only short 16S rRNA gene regions, typically providing for only family- or genus-level taxonomy. Moreover, sequencing errors often inflate the number of taxa present. Pacific Biosciences’ (PacBio’s) long-read technology in particular suffers from high error rates per base. Herein, we present a microbiome analysis pipeline that takes advantage of PacBio circular consensus…

Read More »

Sunday, September 22, 2019

Dynamic transcriptome profiling dataset of vaccinia virus obtained from long-read sequencing techniques.

Poxviruses are large DNA viruses that infect humans and animals. Vaccinia virus (VACV) has been applied as a live vaccine for immunization against smallpox, which was eradicated by 1980 as a result of worldwide vaccination. VACV is the prototype of poxviruses in the investigation of the molecular pathogenesis of the virus. Short-read sequencing methods have revolutionized transcriptomics; however, they are not efficient in distinguishing between the RNA isoforms and transcript overlaps. Long-read sequencing (LRS) is much better suited to solve these problems and also allow direct RNA sequencing. Despite the scientific relevance of VACV, no LRS data have been generated…

Read More »

Sunday, September 22, 2019

CATCh, an ensemble classifier for chimera detection in 16S rRNA sequencing studies.

In ecological studies, microbial diversity is nowadays mostly assessed via the detection of phylogenetic marker genes, such as 16S rRNA. However, PCR amplification of these marker genes produces a significant amount of artificial sequences, often referred to as chimeras. Different algorithms have been developed to remove these chimeras, but efforts to combine different methodologies are limited. Therefore, two machine learning classifiers (reference-based and de novo CATCh) were developed by integrating the output of existing chimera detection tools into a new, more powerful method. When comparing our classifiers with existing tools in either the reference-based or de novo mode, a higher…

Read More »

Sunday, September 22, 2019

Differential increases of specific FMR1 mRNA isoforms in premutation carriers.

Over 40% of male and ~16% of female carriers of a premutation FMR1 allele (55-200 CGG repeats) will develop fragile X-associated tremor/ataxia syndrome, an adult onset neurodegenerative disorder, while about 20% of female carriers will develop fragile X-associated primary ovarian insufficiency. Marked elevation in FMR1 mRNA transcript levels has been observed with premutation alleles, and RNA toxicity due to increased mRNA levels is the leading molecular mechanism proposed for these disorders. However, although the FMR1 gene undergoes alternative splicing, it is unknown whether all or only some of the isoforms are overexpressed in premutation carriers and which isoforms may contribute to…

Read More »

Sunday, September 22, 2019

Limited effects of variable-retention harvesting on fungal communities decomposing fine roots in coastal temperate rainforests.

Fine root litter is the principal source of carbon stored in forest soils and a dominant source of carbon for fungal decomposers. Differences in decomposer capacity between fungal species may be important determinants of fine-root decomposition rates. Variable-retention harvesting (VRH) provides refuge for ectomycorrhizal fungi, but its influence on fine-root decomposers is unknown, as are the effects of functional shifts in these fungal communities on carbon cycling. We compared fungal communities decomposing fine roots (in litter bags) under VRH, clear-cut, and uncut stands at two sites (6 and 13 years postharvest) and two decay stages (43 days and 1 year…

Read More »

Sunday, September 22, 2019

The third revolution in sequencing technology.

Forty years ago the advent of Sanger sequencing was revolutionary as it allowed complete genome sequences to be deciphered for the first time. A second revolution came when next-generation sequencing (NGS) technologies appeared, which made genome sequencing much cheaper and faster. However, NGS methods have several drawbacks and pitfalls, most notably their short reads. Recently, third-generation/long-read methods appeared, which can produce genome assemblies of unprecedented quality. Moreover, these technologies can directly detect epigenetic modifications on native DNA and allow whole-transcript sequencing without the need for assembly. This marks the third revolution in sequencing technology. Here we review and compare the…

Read More »

Sunday, September 22, 2019

Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T-seq.

Parallel sequencing of a single cell’s genome and transcriptome provides a powerful tool for dissecting genetic variation and its relationship with gene expression. Here we present a detailed protocol for G&T-seq, a method for separation and parallel sequencing of genomic DNA and full-length polyA(+) mRNA from single cells. We provide step-by-step instructions for the isolation and lysis of single cells; the physical separation of polyA(+) mRNA from genomic DNA using a modified oligo-dT bead capture and the respective whole-transcriptome and whole-genome amplifications; and library preparation and sequence analyses of these amplification products. The method allows the detection of thousands of…

Read More »

Sunday, September 22, 2019

L_RNA_scaffolder: scaffolding genomes with transcripts.

Generation of large mate-pair libraries is necessary for de novo genome assembly but the procedure is complex and time-consuming. Furthermore, in some complex genomes, it is hard to increase the N50 length even with large mate-pair libraries, which leads to low transcript coverage. Thus, it is necessary to develop other simple scaffolding approaches, to at least solve the elongation of transcribed fragments.We describe L_RNA_scaffolder, a novel genome scaffolding method that uses long transcriptome reads to order, orient and combine genomic fragments into larger sequences. To demonstrate the accuracy of the method, the zebrafish genome was scaffolded. With expanded human transcriptome…

Read More »

Sunday, September 22, 2019

Daily HIV pre-exposure prophylaxis (PrEP) with tenofovir disoproxil fumarate-emtricitabine reduced Streptococcus and increased Erysipelotrichaceae in rectal microbiota.

Daily PrEP is highly effective at preventing HIV-1 acquisition, but risks of long-term tenofovir disoproxil fumarate plus emtricitabine (TDF-FTC) include renal decline and bone mineral density decrease in addition to initial gastrointestinal side effects. We investigated the impact of TDF-FTC on the enteric microbiome using rectal swabs collected from healthy MSM before PrEP initiation and after 48 to 72 weeks of adherent PrEP use. The V4 region of the 16S ribosomal RNA gene sequencing showed that Streptococcus was significantly reduced from 12.0% to 1.2% (p?=?0.036) and Erysipelotrichaceae family was significantly increased from 0.79% to 3.3% (p?=?0.028) after 48-72 weeks of daily…

Read More »

Sunday, September 22, 2019

Bayesian nonparametric discovery of isoforms and individual specific quantification.

Most human protein-coding genes can be transcribed into multiple distinct mRNA isoforms. These alternative splicing patterns encourage molecular diversity, and dysregulation of isoform expression plays an important role in disease etiology. However, isoforms are difficult to characterize from short-read RNA-seq data because they share identical subsequences and occur in different frequencies across tissues and samples. Here, we develop BIISQ, a Bayesian nonparametric model for isoform discovery and individual specific quantification from short-read RNA-seq data. BIISQ does not require isoform reference sequences but instead estimates an isoform catalog shared across samples. We use stochastic variational inference for efficient posterior estimates and…

Read More »

Sunday, September 22, 2019

Koumiss consumption alleviates symptoms of patients with chronic atrophic gastritis: A possible link To modulation of gut microbiota

Intestinal dysbiosisis closely related to a variety of medical conditions, especially gastrointestinal diseases. The present study aimed to investigate the effects of koumiss on chronic atrophic gastritis (CAG) in an out-patient clinical trial (n = 10; all female subjects aged 41-55; body mass index ranging from 19.5 to 25.8). Each patient consumed three servings of koumiss per day (i.e. 250 ml daily before each of 3 meals) for a 60-day period. The improvement of patients’ symptoms was monitored by comparing the total scores of symptoms before and after the treatment. Meanwhile, the changes in the patients’ fecal microbiota composition and…

Read More »

Sunday, September 22, 2019

Single-molecule long-read transcriptome profiling of Platysternon megacephalum mitochondrial genome with gene rearrangement and control region duplication.

Platysternon megacephalum is the sole living representative of the poorly studied turtle lineage Platysternidae. Their mitochondrial genome has been subject to gene rearrangement and control region duplication, resulting in a unique mitochondrial gene order in vertebrates. In this study, we sequenced the first full-length turtle (P. megacephalum) liver transcriptome using single-molecule real-time sequencing to study the transcriptional mechanisms of its mitochondrial genome. ND5 and ND6 anti-sense (ND6AS) forms a single transcript with the same expression in the human mitochondrial genome, but here we demonstrated differential expression of the rearranged ND5 and ND6AS genes in P. megacephalum. And some polycistronic transcripts…

Read More »

Sunday, September 22, 2019

High-confidence coding and noncoding transcriptome maps.

The advent of high-throughput RNA sequencing (RNA-seq) has led to the discovery of unprecedentedly immense transcriptomes encoded by eukaryotic genomes. However, the transcriptome maps are still incomplete partly because they were mostly reconstructed based on RNA-seq reads that lack their orientations (known as unstranded reads) and certain boundary information. Methods to expand the usability of unstranded RNA-seq data by predetermining the orientation of the reads and precisely determining the boundaries of assembled transcripts could significantly benefit the quality of the resulting transcriptome maps. Here, we present a high-performing transcriptome assembly pipeline, called CAFE, that significantly improves the original assemblies, respectively…

Read More »

1 2 3 4 5 29

Subscribe for blog updates:

Archives