Menu
September 22, 2019  |  

A high-resolution genetic map of the cereal crown rot pathogen Fusarium pseudograminearum provides a near-complete genome assembly.

Fusarium pseudograminearum is an important pathogen of wheat and barley, particularly in semi-arid environments. Previous genome assemblies for this organism were based entirely on short read data and are highly fragmented. In this work, a genetic map of F. pseudograminearum has been constructed for the first time based on a mapping population of 178 individuals. The genetic map, together with long read scaffolding of a short read-based genome assembly, was used to give a near-complete assembly of the four F. pseudograminearum chromosomes. Large regions of synteny between F. pseudograminearum and F. graminearum, the related pathogen that is the primary causal agent of cereal head blight disease, were previously proposed in the core conserved genome, but the construction of a genetic map to order and orient contigs is critical to the validation of synteny and the placing of species-specific regions. Indeed, our comparative analyses of the genomes of these two related pathogens suggest that rearrangements in the F. pseudograminearum genome have occurred in the chromosome ends. One of these rearrangements includes the transposition of an entire gene cluster involved in the detoxification of the benzoxazolinone (BOA) class of plant phytoalexins. This work provides an important genomic and genetic resource for F. pseudograminearum, which is less well characterized than F. graminearum. In addition, this study provides new insights into a better understanding of the sexual reproduction process in F. pseudograminearum, which informs us of the potential of this pathogen to evolve.© 2016 BSPP AND JOHN WILEY & SONS LTD.


September 22, 2019  |  

Genomic analysis of multidrug-resistant Escherichia coli ST58 causing urosepsis.

Sequence type 58 (ST58) phylogroup B1 Escherichia coli have been isolated from a wide variety of mammalian and avian hosts but are not noted for their ability to cause serious disease in humans or animals. Here we determined the genome sequences of two multidrug-resistant E. coli ST58 strains from urine and blood of one patient using a combination of Illumina and Single Molecule, Real-Time (SMRT) sequencing. Both ST58 strains were clonal and were characterised as serotype O8:H25, phylogroup B1 and carried a complex resistance locus/loci (CRL) that featured an atypical class 1 integron with a dfrA5 (trimethoprim resistance) gene cassette followed by only 24 bp of the 3′-CS. CRL that carry this particular integron have been described previously in E. coli from cattle, pigs and humans in Australia. The integron abuts a copy of Tn6029, an IS26-flanked composite transposon encoding blaTEM, sul2 and strAB genes that confer resistance to ampicillin, sulfathiazole and streptomycin, respectively. The CRL resides within a novel Tn2610-like hybrid Tn1721/Tn21 transposon on an IncF, ColV plasmid (pSDJ2009-52F) of 138 553 bp that encodes virulence associated genes implicated in life-threatening extraintestinal pathogenic E. coli (ExPEC) infections. Notably, pSDJ2009-52F shares high sequence identity with pSF-088-1, a plasmid reported in an E. coli ST95 strain from a patient with blood sepsis from a hospital in San Francisco. These data suggest that extraintestinal infections caused by E. coli carrying ColV-like plasmids, irrespective of their phylogroup or ST, may pose a potential threat to human health, particularly to the elderly and immunocompromised. Copyright © 2018. Published by Elsevier B.V.


September 22, 2019  |  

Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness.

Diet may be modified seasonally or by biogeographic, demographic or cultural shifts. It can differentially influence mitochondrial bioenergetics, retrograde signalling to the nuclear genome, and anterograde signalling to mitochondria. All these interactions have the potential to alter the frequencies of mtDNA haplotypes (mitotypes) in nature and may impact human health. In a model laboratory system, we fed four diets varying in Protein: Carbohydrate (P:C) ratio (1:2, 1:4, 1:8 and 1:16 P:C) to four homoplasmic Drosophila melanogaster mitotypes (nuclear genome standardised) and assayed their frequency in population cages. When fed a high protein 1:2 P:C diet, the frequency of flies harbouring Alstonville mtDNA increased. In contrast, when fed the high carbohydrate 1:16 P:C food the incidence of flies harbouring Dahomey mtDNA increased. This result, driven by differences in larval development, was generalisable to the replacement of the laboratory diet with fruits having high and low P:C ratios, perturbation of the nuclear genome and changes to the microbiome. Structural modelling and cellular assays suggested a V161L mutation in the ND4 subunit of complex I of Dahomey mtDNA was mildly deleterious, reduced mitochondrial functions, increased oxidative stress and resulted in an increase in larval development time on the 1:2 P:C diet. The 1:16 P:C diet triggered a cascade of changes in both mitotypes. In Dahomey larvae, increased feeding fuelled increased ß-oxidation and the partial bypass of the complex I mutation. Conversely, Alstonville larvae upregulated genes involved with oxidative phosphorylation, increased glycogen metabolism and they were more physically active. We hypothesise that the increased physical activity diverted energy from growth and cell division and thereby slowed development. These data further question the use of mtDNA as an assumed neutral marker in evolutionary and population genetic studies. Moreover, if humans respond similarly, we posit that individuals with specific mtDNA variations may differentially metabolise carbohydrates, which has implications for a variety of diseases including cardiovascular disease, obesity, and perhaps Parkinson’s Disease.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.