X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Identification of Burkholderia fungorum in the urine of an individual with spinal cord injury and augmentation cystoplasty using 16S sequencing: copathogen or innocent bystander?

People with neuropathic bladder (NB) secondary to spinal cord injury (SCI) are at risk for multiple genitourinary complications, the most frequent of which is urinary tract infection (UTI). Despite the high frequency with which UTI occurs, our understanding of the role of urinary microbes in health and disease is limited. In this paper, we present the first prospective case study integrating symptom reporting, urinalysis, urine cultivation, and 16S ribosomal ribonucleic acid (rRNA) sequencing of the urine microbiome.A 55-year-old male with NB secondary to SCI contributed 12 urine samples over an 8-month period during asymptomatic, symptomatic, and postantibiotic periods. All bacteria…

Read More »

Sunday, September 22, 2019

Characterization of four C1q/TNF-related proteins (CTRPs) from red-lip mullet (Liza haematocheila) and their transcriptional modulation in response to bacterial and pathogen-associated molecular pattern stimuli.

The structural and evolutionary linkage between tumor necrosis factor (TNF) and the globular C1q (gC1q) domain defines the C1q and TNF-related proteins (CTRPs), which are involved in diverse functions such as immune defense, inflammation, apoptosis, autoimmunity, and cell differentiation. In this study, red-lip mullet (Liza haematocheila) CTRP4-like (MuCTRP4-like), CTRP5 (MuCTRP5), CTRP6 (MuCTRP6), and CTRP7 (MuCTRP7) were identified from the red-lip mullet transcriptome database and molecularly characterized. According to in silico analysis, coding sequences of MuCTRP4-like, MuCTRP5, MuCTRP6, and MuCTRP7 consisted of 1128, 753, 729, and 888 bp open reading frames (ORF), respectively and encoded 375, 250, 242, and 295 amino…

Read More »

Sunday, September 22, 2019

Next-generation approaches to advancing eco-immunogenomic research in critically endangered primates.

High-throughput sequencing platforms are generating massive amounts of genomic data from nonmodel species, and these data sets are valuable resources that can be mined to advance a number of research areas. An example is the growing amount of transcriptome data that allow for examination of gene expression in nonmodel species. Here, we show how publicly available transcriptome data from nonmodel primates can be used to design novel research focused on immunogenomics. We mined transcriptome data from the world’s most endangered group of primates, the lemurs of Madagascar, for sequences corresponding to immunoglobulins. Our results confirmed homology between strepsirrhine and haplorrhine…

Read More »

Sunday, September 22, 2019

Initial colonization, community assembly and ecosystem function: fungal colonist traits and litter biochemistry mediate decay rate.

Priority effects are an important ecological force shaping biotic communities and ecosystem processes, in which the establishment of early colonists alters the colonization success of later-arriving organisms via competitive exclusion and habitat modification. However, we do not understand which biotic and abiotic conditions lead to strong priority effects and lasting historical contingencies. Using saprotrophic fungi in a model leaf decomposition system, we investigated whether compositional and functional consequences of initial colonization were dependent on initial colonizer traits, resource availability or a combination thereof. To test these ideas, we factorially manipulated leaf litter biochemistry and initial fungal colonist identity, quantifying subsequent…

Read More »

Sunday, September 22, 2019

GMAP and GSNAP for genomic sequence alignment: enhancements to speed, accuracy, and functionality.

The programs GMAP and GSNAP, for aligning RNA-Seq and DNA-Seq datasets to genomes, have evolved along with advances in biological methodology to handle longer reads, larger volumes of data, and new types of biological assays. The genomic representation has been improved to include linear genomes that can compare sequences using single-instruction multiple-data (SIMD) instructions, compressed genomic hash tables with fast access using SIMD instructions, handling of large genomes with more than four billion bp, and enhanced suffix arrays (ESAs) with novel data structures for fast access. Improvements to the algorithms have included a greedy match-and-extend algorithm using suffix arrays, segment…

Read More »

Sunday, September 22, 2019

Sequence of the sugar pine megagenome.

Until very recently, complete characterization of the megagenomes of conifers has remained elusive. The diploid genome of sugar pine (Pinus lambertiana Dougl.) has a highly repetitive, 31 billion bp genome. It is the largest genome sequenced and assembled to date, and the first from the subgenus Strobus, or white pines, a group that is notable for having the largest genomes among the pines. The genome represents a unique opportunity to investigate genome “obesity” in conifers and white pines. Comparative analysis of P. lambertiana and P. taeda L. reveals new insights on the conservation, age, and diversity of the highly abundant transposable elements,…

Read More »

Sunday, September 22, 2019

Evidence of the red-queen hypothesis from accelerated rates of evolution of genes involved in biotic interactions in Pneumocystis.

Pneumocystis species are ascomycete fungi adapted to live inside the lungs of mammals. These ascomycetes show extensive stenoxenism, meaning that each species of Pneumocystis infects a single species of host. Here, we study the effect exerted by natural selection on gene evolution in the genomes of three Pneumocystis species. We show that genes involved in host interaction evolve under positive selection. In the first place, we found strong evidence of episodic diversifying selection in Major surface glycoproteins (Msg). These proteins are located on the surface of Pneumocystis and are used for host attachment and probably for immune system evasion. Consistent…

Read More »

Sunday, September 22, 2019

Plasmodium knowlesi: a superb in vivo nonhuman primate model of antigenic variation in malaria.

Antigenic variation in malaria was discovered in Plasmodium knowlesi studies involving longitudinal infections of rhesus macaques (M. mulatta). The variant proteins, known as the P. knowlesi Schizont Infected Cell Agglutination (SICA) antigens and the P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) antigens, expressed by the SICAvar and var multigene families, respectively, have been studied for over 30 years. Expression of the SICA antigens in P. knowlesi requires a splenic component, and specific antibodies are necessary for variant antigen switch events in vivo. Outstanding questions revolve around the role of the spleen and the mechanisms by which the expression of these…

Read More »

Sunday, September 22, 2019

Nuclear and mitochondrial genomes of the hybrid fungal plant pathogen Verticillium longisporum display a mosaic structure

Allopolyploidization, genome duplication through interspecific hybridization, is an important evolutionary mechanism that can enable organisms to adapt to environmental changes or stresses. This increased adaptive potential of allopolyploids can be particularly relevant for plant pathogens in their quest for host immune response evasion. Allodiploidization likely caused the shift in host range of the fungal pathogen plant Verticillium longisporum, as V. longisporum mainly infects Brassicaceae plants in contrast to haploid Verticillium spp. In this study, we investigated the allodiploid genome structure of V. longisporum and its evolution in the hybridization aftermath. The nuclear genome of V. longisporum displays a mosaic structure,…

Read More »

Sunday, September 22, 2019

Comparative genomics of completely sequenced Lactobacillus helveticus genomes provides insights into strain-specific genes and resolves metagenomics data down to the strain level.

Although complete genome sequences hold particular value for an accurate description of core genomes, the identification of strain-specific genes, and as the optimal basis for functional genomics studies, they are still largely underrepresented in public repositories. Based on an assessment of the genome assembly complexity for all lactobacilli, we used Pacific Biosciences’ long read technology to sequence and de novo assemble the genomes of three Lactobacillus helveticus starter strains, raising the number of completely sequenced strains to 12. The first comparative genomics study for L. helveticus-to our knowledge-identified a core genome of 988 genes and sets of unique, strain-specific genes…

Read More »

Sunday, September 22, 2019

Sequence analysis of European maize inbred line F2 provides new insights into molecular and chromosomal characteristics of presence/absence variants.

Maize is well known for its exceptional structural diversity, including copy number variants (CNVs) and presence/absence variants (PAVs), and there is growing evidence for the role of structural variation in maize adaptation. While PAVs have been described in this important crop species, they have been only scarcely characterized at the sequence level and the extent of presence/absence variation and relative chromosomal landscape of inbred-specific regions remain to be elucidated.De novo genome sequencing of the French F2 maize inbred line revealed 10,044 novel genomic regions larger than 1 kb, making up 88 Mb of DNA, that are present in F2 but not in…

Read More »

Sunday, September 22, 2019

Jointly aligning a group of DNA reads improves accuracy of identifying large deletions.

Performing sequence alignment to identify structural variants, such as large deletions, from genome sequencing data is a fundamental task, but current methods are far from perfect. The current practice is to independently align each DNA read to a reference genome. We show that the propensity of genomic rearrangements to accumulate in repeat-rich regions imposes severe ambiguities in these alignments, and consequently on the variant calls-with current read lengths, this affects more than one third of known large deletions in the C. Venter genome. We present a method to jointly align reads to a genome, whereby alignment ambiguity of one read…

Read More »

Sunday, September 22, 2019

Bat biology, genomes, and the Bat1K project: To generate chromosome-level genomes for all living bat species.

Bats are unique among mammals, possessing some of the rarest mammalian adaptations, including true self-powered flight, laryngeal echolocation, exceptional longevity, unique immunity, contracted genomes, and vocal learning. They provide key ecosystem services, pollinating tropical plants, dispersing seeds, and controlling insect pest populations, thus driving healthy ecosystems. They account for more than 20% of all living mammalian diversity, and their crown-group evolutionary history dates back to the Eocene. Despite their great numbers and diversity, many species are threatened and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n~1,300) to chromosome-level assembly. The Bat1K…

Read More »

Sunday, September 22, 2019

Characterizing the DNA methyltransferases of Haloferax volcanii via bioinformatics, gene deletion, and SMRT Sequencing.

DNA methyltransferases (MTases), which catalyze the methylation of adenine and cytosine bases in DNA, can occur in bacteria and archaea alongside cognate restriction endonucleases (REases) in restriction-modification (RM) systems or independently as orphan MTases. Although DNA methylation and MTases have been well-characterized in bacteria, research into archaeal MTases has been limited. A previous study examined the genomic DNA methylation patterns (methylome) of the halophilic archaeonHaloferax volcanii, a model archaeal system which can be easily manipulated in laboratory settings, via single-molecule real-time (SMRT) sequencing and deletion of a putative MTase gene (HVO_A0006). In this follow-up study, we deleted other putative MTase…

Read More »

Sunday, September 22, 2019

The complete mitochondrial genome of the hermaphroditic freshwater mussel Anodonta cygnea (Bivalvia: Unionidae): in silico analyses of sex-specific ORFs across order Unionoida.

Doubly uniparental inheritance (DUI) of mitochondrial DNA in bivalves is a fascinating exception to strictly maternal inheritance as practiced by all other animals. Recent work on DUI suggests that there may be unique regions of the mitochondrial genomes that play a role in sex determination and/or sexual development in freshwater mussels (order Unionoida). In this study, one complete mitochondrial genome of the hermaphroditic swan mussel, Anodonta cygnea, is sequenced and compared to the complete mitochondrial genome of the gonochoric duck mussel, Anodonta anatina. An in silico assessment of novel proteins found within freshwater bivalve species (known as F-, H-, and…

Read More »

1 2

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »