June 1, 2021  |  

A novel analytical pipeline for de novo haplotype phasing and amplicon analysis using SMRT Sequencing technology.

While the identification of individual SNPs has been readily available for some time, the ability to accurately phase SNPs and structural variation across a haplotype has been a challenge. With individual reads of an average length of 9 kb (P5-C3), and individual reads beyond 30 kb in length, SMRT Sequencing technology allows the identification of mutation combinations such as microdeletions, insertions, and substitutions without any predetermined reference sequence. Long- amplicon analysis is a novel protocol that identifies and reports the abundance of differing clusters of sequencing reads within a single library. Graphs generated via hierarchical clustering of individual sequencing reads are used to generate Markov models representing the consensus sequence of individual clusters found to be significantly different. Long-amplicon analysis is capable of differentiating between underlying sequences that are 99.9% similar, which is suitable for haplotyping and differentiating pseudogenes from coding transcripts. This protocol allows for the identification of structural variation in the MUC5AC gene sequence, despite the presence of a gap in the current genome assembly, and can also be used for HLA haplotyping. Clustering can also been applied to identify full length transcripts for the purpose of estimating consensus sequences and enumerating isoform types. Long-amplicon analysis allows for the elucidation of complex regions otherwise missed by other sequencing technologies, which may contribute to the diagnosis and understanding of otherwise complex diseases.

June 1, 2021  |  

A comprehensive lincRNA analysis: From conifers to trees

We have produced an updated annotation of the Norway spruce genome on the basis of an in siliconormalised set of RNA-Seq data obtained from 1,529 samples and comprising 15.5 billion paired-end Illumina HiSeq reads complemented by 18Mbp of PacBio cDNA data (3.2M sequences). In addition to augmenting and refining the previous protein coding gene annotation, here we focus on the addition of long intergenic non-coding RNA (lincRNA) and micro RNA (miRNA) genes. In addition to non-coding loci, our analyses also identified protein coding genes that had been missed by the initial genome annotation and enabled us to update the annotation of existing gene models. In particular, splice variant information, as supported by PacBio sequencing reads, has been added to the current annotation and previously fragmented gene models have been merged by scaffolding disjoint genomic scaffolds on the basis of transcript evidence. Using this refined annotation, a targeted analysis of the lincRNAs enabled their classification as i) deeply conserved, ii) conserved in seed plants iii) gymnosperm/conifer specific. Concurrently, complementary analyses were performed as part of the aspen genome project and the results of a comparative analysis of the lincRNAs conserved in both Norway spruce and Eurasian aspen enabled us to identify conserved and diverged expression profiles. At present, we are delving further into the expression results with the aim to functionally annotate the lincRNA genes, by developing a co-expression network analyses based GO annotation.

June 1, 2021  |  

Immune regions are no longer incomprehensible with SMRT Sequencing

The complex immune regions of the genome, including MHC and KIR, contain large copy number variants (CNVs), a high density of genes, hyper-polymorphic gene alleles, and conserved extended haplotypes (CEH) with enormous linkage disequilibrium (LDs). This level of complexity and inherent biases of short-read sequencing make it challenging for extracting immune region haplotype information from reference-reliant, shotgun sequencing and GWAS methods. As NGS based genome and exome sequencing and SNP arrays have become a routine for population studies, numerous efforts are being made for developing software to extract and or impute the immune gene information from these datasets. Despite these efforts, the fine mapping of causal variants of immune genes for their well-documented association with cancer, drug-induced hypersensitivity and immune-related diseases, has been slower than expected. This has in many ways limited our understanding of the mechanisms leading to immune disease. In the present work, we demonstrate the advantages of long reads delivered by SMRT Sequencing for assembling complete haplotypes of MHC and KIR gene clusters, as well as calling correct genotypes of genes comprised within them. All the genotype information is detected at allele- level with full phasing information across SNP-poor regions. Genotypes were called correctly from targeted gene amplicons, haplotypes, as well as from a completely assembled 5 Mb contig of the MHC region from a de novo assembly of whole genome shotgun data. De novo analysis pipeline used in all these approaches allowed for reference-free analysis without imputation, a key for interrogation without prior knowledge about ethnic backgrounds. These methods are thus easily adoptable for previously uncharacterized human or non-human species.

June 1, 2021  |  

Multiplex target enrichment using barcoded multi-kilobase fragments and probe-based capture technologies

Target enrichment capture methods allow scientists to rapidly interrogate important genomic regions of interest for variant discovery, including SNPs, gene isoforms, and structural variation. Custom targeted sequencing panels are important for characterizing heterogeneous, complex diseases and uncovering the genetic basis of inherited traits with more uniform coverage when compared to PCR-based strategies. With the increasing availability of high-quality reference genomes, customized gene panels are readily designed with high specificity to capture genomic regions of interest, thus enabling scientists to expand their research scope from a single individual to larger cohort studies or population-wide investigations. Coupled with PacBio® long-read sequencing, these technologies can capture 5 kb fragments of genomic DNA (gDNA), which are useful for interrogating intronic, exonic, and regulatory regions, characterizing complex structural variations, distinguishing between gene duplications and pseudogenes, and interpreting variant haplotyes. In addition, SMRT® Sequencing offers the lowest GC-bias and can sequence through repetitive regions. We demonstrate the additional insights possible by using in-depth long read capture sequencing for key immunology, drug metabolizing, and disease causing genes such as HLA, filaggrin, and cancer associated genes.

June 1, 2021  |  

Characterizing haplotype diversity at the immunoglobulin heavy chain locus across human populations using novel long-read sequencing and assembly approaches

The human immunoglobulin heavy chain locus (IGH) remains among the most understudied regions of the human genome. Recent efforts have shown that haplotype diversity within IGH is elevated and exhibits population specific patterns; for example, our re-sequencing of the locus from only a single chromosome uncovered >100 Kb of novel sequence, including descriptions of six novel alleles, and four previously unmapped genes. Historically, this complex locus architecture has hindered the characterization of IGH germline single nucleotide, copy number, and structural variants (SNVs; CNVs; SVs), and as a result, there remains little known about the role of IGH polymorphisms in inter-individual antibody repertoire variability and disease. To remedy this, we are taking a multi-faceted approach to improving existing genomic resources in the human IGH region. First, from whole-genome and fosmid-based datasets, we are building the largest and most ethnically diverse set of IGH reference assemblies to date, by employing PacBio long-read sequencing combined with novel algorithms for phased haplotype assembly. In total, our effort will result in the characterization of >15 phased haplotypes from individuals of Asian, African, and European descent, to be used as a representative reference set by the genomics and immunogenetics community. Second, we are utilizing this more comprehensive sequence catalogue to inform the design and analysis of novel targeted IGH genotyping assays. Standard targeted DNA enrichment methods (e.g., exome capture) are currently optimized for the capture of only very short (100’s of bp) DNA segments. Our platform uses a modified bench protocol to pair existing capture-array technologies with the enrichment of longer fragments of DNA, enabling the use of PacBio sequencing of DNA segments up to 7 Kb. This substantial increase in contiguity disambiguates many of the complex repeated structures inherent to the locus, while yielding the base pair fidelity required to call SNVs. Together these resources will establish a stronger framework for further characterizing IGH genetic diversity and facilitate IGH genomic profiling in the clinical and research settings, which will be key to fully understanding the role of IGH germline variation in antibody repertoire development and disease.

June 1, 2021  |  

The value of long read amplicon sequencing for clinical applications

NGS is commonly used for amplicon sequencing in clinical applications to study genetic disorders and detect disease-causing mutations. This approach can be plagued by limited ability to phase sequence variants and makes interpretation of sequence data difficult when pseudogenes are present. Long-read highly accurate amplicon sequencing can provide very accurate, efficient, high throughput (through multiplexing) sequences from single molecules, with read lengths largely limited by PCR. Data is easy to interpret; phased variants and breakpoints are present within high fidelity individual reads. Here we show SMRT Sequencing of the PMS2 and OPN1 (MW and LW) genes using the Sequel System. Homologous regions make NGS and MLPA results very difficult to interpret.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.